Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 174268, 7 pages
http://dx.doi.org/10.1155/2011/174268
Research Article

Effect of Source, Surfactant, and Deposition Process on Electronic Properties of Nanotube Arrays

1Integrated Nanosystems Research Facility, Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
2Chemical Diagnostics and Engineering (C-CDE) Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
3Department of Printed Electronics, Sunchon National University, Suncheon, Jeonnam 540-742, Republic of Korea

Received 6 May 2010; Accepted 27 September 2010

Academic Editor: Sulin Zhang

Copyright © 2011 Dheeraj Jain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Rutherglen, D. Jain, and P. Burke, “Nanotube electronics for radiofrequency applications,” Nature Nanotechnology, vol. 4, pp. 811–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. Cao and J. A. Rogers, “Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects,” Advanced Materials, vol. 21, no. 1, pp. 29–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science, vol. 287, no. 5459, pp. 1801–1804, 2000. View at Publisher · View at Google Scholar
  4. P. J. Burke, S. Li, and Z. Yu, “Quantitative theory of nanowire and nanotube antenna performance,” IEEE Transactions on Nanotechnology, vol. 5, no. 4, pp. 314–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. J. Burke, C. Rutherglen, and Z. Yu, “Carbon nanotube antennas,” in Proceedings of the 9th International Conference on Electromagnetics in Advanced Applications, p. 937, 2005.
  6. H. Jin, D. A. Heller, and M. S. Strano, “Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells,” Nano Letters, vol. 8, no. 6, pp. 1577–1585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nature Nanotechnology, vol. 3, no. 7, pp. 387–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. V. C. Moore, M. S. Strano, E. H. Haroz et al., “Individually suspended single-walled carbon nanotubes in various surfactants,” Nano Letters, vol. 3, no. 10, pp. 1379–1382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. A. Dyke and J. M. Tour, “Covalent functionalization of single-walled carbon nanotubes for materials applications,” Journal of Physical Chemistry A, vol. 108, no. 51, pp. 11151–11159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Fu and J. Liu, “Effects of ionic surfactant adsorption on single-walled carbon nanotube thin film devices in aqueous solutions,” Langmuir, vol. 21, no. 4, pp. 1162–1165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. LeMieux, M. Roberts, S. Barman, W. J. Yong, M. K. Jong, and Z. Bao, “Self-sorted, aligned nanotube networks for thin-film transistors,” Science, vol. 321, no. 5885, pp. 101–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. V. Löhneysen, “Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis,” Nano Letters, vol. 3, no. 8, pp. 1019–1023, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Rutherglen, D. Jain, and P. Burke, “Rf resistance and inductance of massively parallel single walled carbon nanotubes: direct, broadband measurements and near perfect 50 impedance matching,” Applied Physics Letters, vol. 93, no. 8, Article ID 083119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Krupke, F. Hennrich, H. V. Löhneysen, and M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science, vol. 301, no. 5631, pp. 344–347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Dimaki and P. Bøggild, “Dielectrophoresis of carbon nanotubes using microelectrodes: a numerical study,” Nanotechnology, vol. 15, no. 8, pp. 1095–1102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Niyogi, C. G. Densmore, and S. K. Doorn, “Electrolyte tuning of surfactant interfacial behavior for enhanced density-based separations of single-walled carbon nanotubes,” Journal of the American Chemical Society, vol. 131, no. 3, pp. 1144–1153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Kim, S. Hong, S. Jung, M. S. Strano, J. Choi, and S. Baik, “Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants,” Journal of Physical Chemistry B, vol. 110, no. 4, pp. 1541–1545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Le Louarn, F. Kapche, J.-M. Bethoux et al., “Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors,” Applied Physics Letters, vol. 90, no. 23, Article ID 233108, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Nougaret, H. Happy, G. Dambrine et al., “80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes,” Applied Physics Letters, vol. 94, no. 24, Article ID 243505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Rouhi, D. Jain, K. Zand, and P. J. Burke, “All-semiconducting nanotube devices for RF and microwave applications,” in Proceedings of the IEEE MTT International Microwave Symposium, May 2009.
  21. S. Auvray, V. Derycke, M. Goffman, A. Filoramo, O. Jost, and J.-P. Bourgoin, “Chemical optimization of self-assembled carbon nanotube transistors,” Nano Letters, vol. 5, no. 3, pp. 451–455, 2005. View at Publisher · View at Google Scholar · View at Scopus