Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 206320, 12 pages
http://dx.doi.org/10.1155/2011/206320
Research Article

Development of Quantitative Structure-Property Relationship Models for Self-Emulsifying Drug Delivery System of 2-Aryl Propionic Acid NSAIDs

1Department of Pharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
2State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, China
3Department of Pharmacy, Chengdu Family Planning Guidance Institute, Chengdu, Sichuan 610041, China

Received 19 May 2011; Revised 22 July 2011; Accepted 22 July 2011

Academic Editor: Xing J. Liang

Copyright © 2011 Chen-Wen Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Atef and A. A. Belmonte, “Formulation and in vitro and in vivo characterization of a phenytoin self-emulsifying drug delivery system (SEDDS),” European Journal of Pharmaceutical Sciences, vol. 35, no. 4, pp. 257–263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Hussein, M. Türk, and M. A. Wahl, “Drug loading into β-cyclodextrin granules using a supercritical fluid process for improved drug dissolution,” European Journal of Pharmaceutical Sciences, vol. 33, no. 3, pp. 306–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Francis, M. Piredda, and F. M. Winnik, “Solubilization of poorly water soluble drugs in micelles of hydrophobically modified hydroxypropylcellulose copolymers,” Journal of Controlled Release, vol. 93, no. 1, pp. 59–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Rutnakornpituk, S. Meerod, B. Boontha, and U. Wichai, “Magnetic core-bilayer shell nanoparticle: a novel vehicle for entrapmentof poorly water-soluble drugs,” Polymer, vol. 50, no. 15, pp. 3508–3515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Vasconcelos, B. Sarmento, and P. Costa, “Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs,” Drug Discovery Today, vol. 12, no. 23-24, pp. 1068–1075, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. W. Pouton, “Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying' drug delivery systems,” European Journal of Pharmaceutical Sciences, vol. 11, no. S2, pp. S93–S98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. P. P. Constantinides, “Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects,” Pharmaceutical Research, vol. 12, no. 11, pp. 1561–1572, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. S. A. Charman, W. N. Charman, M. C. Rogge, T. D. Wilson, F. J. Dutko, and C. W. Pouton, “Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound,” Pharmaceutical Research, vol. 9, no. 1, pp. 87–93, 1992. View at Google Scholar · View at Scopus
  9. D. J. Hauss, S. E. Fogal, J. V. Ficorilli et al., “Lipid-based delivery systems for improving the bioavailability and lymphatic transport of a poorly water-soluble LTB4 inhibitor,” Journal of Pharmaceutical Sciences, vol. 87, no. 2, pp. 164–169, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Porter, A. M. Kaukonen, B. J. Boyd, G. A. Edwards, and W. N. Charman, “Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation,” Pharmaceutical Research, vol. 21, no. 8, pp. 1405–1412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. T. R. Kommuru, B. Gurley, M. A. Khan, and I. K. Reddy, “Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment,” International Journal of Pharmaceutics, vol. 212, no. 2, pp. 233–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison, “A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability,” Pharmaceutical Research, vol. 12, no. 3, pp. 413–420, 1995. View at Google Scholar · View at Scopus
  13. R. N. Gursoy and S. Benita, “Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs,” Biomedicine and Pharmacotherapy, vol. 58, no. 3, pp. 173–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. I. I. Grover, I. I. Singh, and I. I. Bakshi, “Quantitative structure-property relationships in pharmaceutical research—part 1,” Pharmaceutical Science and Technology Today, vol. 3, no. 1, pp. 28–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. I. I. Grover, I. I. Singh, and I. I. Bakshi, “Quantitative structure-property relationships in pharmaceutical research—part 2,” Pharmaceutical Science and Technology Today, vol. 3, no. 2, pp. 50–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. B. Liou, H. O. Ho, C. J. Yang, Y. K. Lin, and M. T. Sheu, “Construction of a quantitative structure-permeability relationship (QSPR) for the transdermal delivery of NSAIDs,” Journal of Controlled Release, vol. 138, no. 3, pp. 260–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Y. Xu, J. W. Zou, Q. S. Yu, Y. H. Wang, J. Y. Zhang, and H. X. Jin, “QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers,” Chemosphere, vol. 66, no. 10, pp. 1998–2010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Talevi, M. Goodarzi, E. V. Ortiz et al., “Prediction of drug intestinal absorption by new linear and non-linear QSPR,” European Journal of Medicinal Chemistry, vol. 46, no. 1, pp. 218–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Guerra, N. E. Campillo, and J. A. Páez, “Neural computational prediction of oral drug absorption based on CODES 2D descriptors,” European Journal of Medicinal Chemistry, vol. 45, no. 3, pp. 930–940, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Ghafourian, M. Barzegar-Jalali, S. Dastmalchi, T. Khavari-Khorasani, N. Hakimiha, and A. Nokhodchi, “QSPR models for the prediction of apparent volume of distribution,” International Journal of Pharmaceutics, vol. 319, no. 1-2, pp. 82–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. V. Turner, D. J. Maddalena, and D. J. Cutler, “Pharmacokinetic parameter prediction from drug structure using artificial neural networks,” International Journal of Pharmaceutics, vol. 270, no. 1-2, pp. 209–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. E. Mager, “Quantitative structure-pharmacokinetic/pharmacodynamic relationships,” Advanced Drug Delivery Reviews, vol. 58, no. 12-13, pp. 1326–1356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. M. T. Saçan, M. Özkul, and S. S. Erdem, “QSPR analysis of the toxicity of aromatic compounds to the algae (Scenedesmus obliquus),” Chemosphere, vol. 68, no. 4, pp. 695–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. O. Taha, H. Abdel-Halim, M. Al-Ghazawi, and E. Khalil, “QSPR modeling of pseudoternary microemulsions formulated employing lecithin surfactants: application of data mining, molecular and statistical modeling,” International Journal of Pharmaceutics, vol. 295, no. 1-2, pp. 135–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ghafourian, A. Safari, K. Adibkia, F. Parviz, and A. Nokhodchi, “A drug release study from hydroxypropylmethylcellulose (HPMC) matrices using QSPR modeling,” Journal of Pharmaceutical Sciences, vol. 96, no. 12, pp. 3334–3351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. O. Taha, M. Al-Ghazawi, H. Abu-Amara, and E. Khalil, “Development of quantitative structure-property relationship models for pseudoternary microemulsions formulated with nonionic surfactants and cosurfactants: application of data mining and molecular modeling,” European Journal of Pharmaceutical Sciences, vol. 15, no. 5, pp. 461–478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Ruiz-Peña, R. Oropesa-Nuñez, T. Pons, S. R. Louro, and A. Pérez-Gramatges, “Physico-chemical studies of molecular interactions between non-ionic surfactants and bovine serum albumin,” Colloids and Surfaces B Biointerfaces, vol. 75, no. 1, pp. 282–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Zhang, Q. Y. Chen, M. L. Xiang, C. Y. Ma, Q. Huang, and S. Y. Yang, “In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach,” Toxicology in Vitro, vol. 23, no. 1, pp. 134–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Agatonovic-Kustrin and R. Beresford, “Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research,” Journal of Pharmaceutical and Biomedical Analysis, vol. 22, no. 5, pp. 717–727, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Goodarzi, M. P. Freitas, and R. Jensen, “Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3,5-dimethylbenzyl)uracil derivatives using MLR, PLS and SVM regressions,” Chemometrics and Intelligent Laboratory Systems, vol. 98, no. 2, pp. 123–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. B. K. Kang, J. S. Lee, S. K. Chon et al., “Development of self-microemulsifying drug delivery systems (SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs,” International Journal of Pharmaceutics, vol. 274, no. 1-2, pp. 65–73, 2004. View at Publisher · View at Google Scholar · View at Scopus