Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 354793, 8 pages
http://dx.doi.org/10.1155/2011/354793
Research Article

Synthesis of Gold Nanoanisotrops Using Dioscorea bulbifera Tuber Extract

1Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411007, India
2Department of Electronic Science, Fergusson College, Pune 411004, India
3Garware Research Centre, Department of Chemistry, University of Pune, Pune 411007, India
4Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune 411025, India
5Department of Microbiology, University of Pune, Pune 411007, India
6Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India

Received 10 May 2011; Accepted 12 July 2011

Academic Editor: Rakesh Joshi

Copyright © 2011 Sougata Ghosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. S. Métraux, Y. C. Cao, R. Jin, and C. A. Mirkin, “Triangular nanoframes made of gold and silver,” Nano Letters, vol. 3, no. 4, pp. 519–522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Sun, S. Dong, and E. Wang, “High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process,” Langmuir, vol. 21, no. 10, pp. 4710–4712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Pang, T. Kondo, and T. Kawai, “Formation of dendrimer-like gold nanoparticle assemblies,” Chemistry of Materials, vol. 17, no. 14, pp. 3636–3641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. J. Huang, Y. H. Wang, P. H. Chiu, M. C. Shih, and T. H. Meen, “Electrochemical synthesis of gold nanocubes,” Materials Letters, vol. 60, no. 15, pp. 1896–1900, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. E. Millstone, S. Park, K. L. Shuford, L. Qin, G. C. Schatz, and C. A. Mirkin, “Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms,” Journal of the American Chemical Society, vol. 127, no. 15, pp. 5312–5313, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. Seo, C. I. Yoo, I. S. Chung, S. M. Park, S. Ryu, and H. Song, “Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: decahedra, icosahedra, and truncated tetrahedra,” Journal of Physical Chemistry C, vol. 112, no. 7, pp. 2469–2475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Physical Review Letters, vol. 90, no. 5, pp. 057401/1–057401/4, 2003. View at Google Scholar · View at Scopus
  8. D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, and G. M. Whitesides, “Forming electrical networks in three dimensions by self-assembly,” Science, vol. 289, no. 5482, pp. 1170–1172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Gomez-Romero, “Hybrid organic-inorganic materials in search of synergic activity,” Advanced Materials, vol. 13, no. 3, pp. 163–174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Qiu, B. Rieger, R. Gilbert, and C. Jérôme, “PLA-coated gold nanoparticles for the labeling of PLA biocarriers,” Chemistry of Materials, vol. 16, no. 5, pp. 850–856, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. B. Narayanan and N. Sakthivel, “Coriander leaf mediated biosynthesis of gold nanoparticles,” Materials Letters, vol. 62, no. 30, pp. 4588–4590, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Bhattacharya and P. Mukherjee, “Biological properties of “naked“ metal nanoparticles,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1289–1306, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Bartneck, H. A. Keul, S. Singh et al., “Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry,” ACS Nano, vol. 4, no. 6, pp. 3073–3086, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. P. R. Selvakannan, S. Mandal, R. Pasricha, S. D. Adyanthaya, and M. Sastry, “One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface,” Chemical Communications, no. 13, pp. 1334–1335, 2002. View at Google Scholar · View at Scopus
  15. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, and Y. Yobiko, “Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold(III) reduction and size of formed gold particles,” Langmuir, vol. 17, no. 25, pp. 7717–7720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science, vol. 298, no. 5601, pp. 2176–2179, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. R. K. Mehra and D. R. Winge, “Metal ion resistance in fungi: molecular mechanisms and their regulated expression,” Journal of Cellular Biochemistry, vol. 45, no. 1, pp. 30–40, 1991. View at Google Scholar · View at Scopus
  18. P. Mukherjee, S. Senapati, D. Mandal et al., “Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum,” ChemBioChem, vol. 3, no. 5, pp. 461–463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Ahmad, P. Mukherjee, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry, “Extra-intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus Trichothecium sp,” Journal of Biomedical Nanotechnology, vol. 1, no. 1, pp. 47–53, 2005. View at Google Scholar
  20. B. D. Sawle, B. Salimath, R. Deshpande, M. D. Bedre, B. K. Prabhakar, and A. Venkataraman, “Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum,” Science and Technology of Advanced Materials, vol. 9, no. 3, pp. 035012–035017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Materials Letters, vol. 61, no. 18, pp. 3984–3987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. I. Husseiny, M. A. El-Aziz, Y. Badr, and M. A. Mahmoud, “Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa,” Spectrochimica Acta Part A, vol. 67, no. 3-4, pp. 1003–1006, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. K. Kalimuthu, R. S. Babu, D. Venkataraman, M. Bilal, and S. Gurunathan, “Biosynthesis of silver nanocrystals by Bacillus licheniformis,” Colloids and Surfaces B, vol. 65, no. 1, pp. 150–153, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. Y. Song, H. K. Jang, and B. S. Kim, “Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts,” Process Biochemistry, vol. 44, no. 10, pp. 1133–1138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, “Biological synthesis of triangular gold nanoprisms,” Nature Materials, vol. 3, no. 7, pp. 482–488, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. K. Singh, M. Talat, D. P. Singh, and O. N. Srivastava, “Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1667–1675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Gardea-Torresdey, J. G. Parsons, E. Gomez, J. Peralta-Videa, H. E. Troiani, and P. Santiago, “Formation and growth of Au nanoparticles inside live alfalfa plants,” Nano Letters, vol. 2, no. 4, pp. 397–401, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract,” Biotechnology Progress, vol. 22, no. 2, pp. 577–583, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. J. Huang, Q. Li, D. Sun et al., “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf,” Nanotechnology, vol. 18, no. 10, p. 105104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Ahmed, M. Z. Chishti, R. K. Johri, A. Bhagat, K. K. Gupta, and G. Ram, “Antihyperglycemic and antidyslipidemic activity of aqueous extract of Dioscorea bulbifera tubers,” Diabetologia Croatica, vol. 38, no. 3, pp. 63–72, 2009. View at Google Scholar · View at Scopus
  31. S. Ghosh, M. Ahire, S. Patil et al., “Antidiabetic activity of Gnidia glauca and Dioscorea bulbifera: potent amylase and glucosidase inhibitors,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 929051, 10 pages, 2012. View at Publisher · View at Google Scholar · View at PubMed
  32. T. B. Nguelefack, M. Mbiantcha, A. Kamanyi, R. B. Teponno, A. L. Tapondjou, and P. Watcho, “Analgesic and anti-inflammatory properties of extracts from the bulbils of Dioscorea bulbifera L. var sativa (Dioscoreaceae) in mice and rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 912935, 2011. View at Publisher · View at Google Scholar · View at PubMed
  33. H. Gao, M. Kuroyanagi, L. Wu, N. Kawahara, T. Yasuno, and Y. Nakamura, “Antitumor-promoting constituents from Dioscorea bulbifera L. in JB6 mouse epidermal cells,” Biological and Pharmaceutical Bulletin, vol. 25, no. 9, pp. 1241–1243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. R. B. Teponno, A. L. Tapondjou, J. D. Djoukeng et al., “Isolation and NMR assignment of a pennogenin glycoside from Dioscorea bulbifera L. var sativa,” Natural Product Sciences, vol. 12, no. 1, pp. 62–66, 2006. View at Google Scholar · View at Scopus
  35. H. Gao, B. Hou, M. Kuroyanagi, and L. Wu, “Constituents from anti-tumor-promoting active part of Dioscorea bulbifera L. in JB6 mouse epidermal cells,” Asian Journal of Traditional Medicines, vol. 2, no. 3, pp. 104–109, 2007. View at Google Scholar
  36. M. R. Bhandari and J. Kawabata, “Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal,” Food Chemistry, vol. 88, no. 2, pp. 163–168, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Zayats, R. Baron, I. Popov, and I. Willner, “Biocatalytic growth of Au nanoparticles: from mechanistic aspects to biosensors design,” Nano Letters, vol. 5, no. 1, pp. 21–25, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. Y. Xiao, V. Pavlov, S. Levine, T. Niazov, G. Markovitch, and I. Willner, “Catalytic growth of Au nanoparticles by NAD(P)H cofactors: optical sensors for NAD(P)+-dependent biocatalyzed transformations,” Angewandte Chemie—International Edition, vol. 43, no. 34, pp. 4519–4522, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. I. Willner, R. Baron, and B. Willner, “Growing metal nanoparticles by enzymes,” Advanced Materials, vol. 18, no. 9, pp. 1109–1120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. S. Shankar, S. Bhargava, and M. Sastry, “Synthesis of gold nanospheres and nanotriangles by the Turkevich approach,” Journal of Nanoscience and Nanotechnology, vol. 5, no. 10, pp. 1721–1727, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Rai, A. Singh, A. Ahmad, and M. Sastry, “Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles,” Langmuir, vol. 22, no. 2, pp. 736–741, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. R. B. Teponno, A. L. Tapondjou, D. Gatsing et al., “Bafoudiosbulbins A, and B, two anti-salmonellal clerodane diterpenoids from Dioscorea bulbifera L. var sativa,” Phytochemistry, vol. 67, no. 17, pp. 1957–1963, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. S. K. Satpute, I. M. Banat, P. K. Dhakephalkar, A. G. Banpurkar, and B. A. Chopade, “Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms,” Biotechnology Advances, vol. 28, no. 4, pp. 436–450, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. S. K. Satpute, A. G. Banpurkar, P. K. Dhakephalkar, I. M. Banat, and B. A. Chopade, “Methods for investigating biosurfactants and bioemulsifiers: a review,” Critical Reviews in Biotechnology, vol. 30, no. 2, pp. 127–144, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Advanced Materials, vol. 13, no. 18, pp. 1389–1393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chemistry of Materials, vol. 15, no. 10, pp. 1957–1962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” Journal of Physical Chemistry B, vol. 105, no. 19, pp. 4065–4067, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chemical Communications, no. 7, pp. 617–618, 2001. View at Google Scholar · View at Scopus
  49. M. Tréguer-Delapierre, J. Majimel, S. Mornet, E. Duguet, and S. Ravaine, “Synthesis of non-spherical gold nanoparticles,” Gold Bulletin, vol. 41, no. 2, pp. 195–207, 2008. View at Google Scholar · View at Scopus
  50. Y. Wang, X. He, K. Wang, X. Zhang, and W. Tan, “Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry,” Colloids and Surfaces B, vol. 73, no. 1, pp. 75–79, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2001.
  52. R. B. Teponno, A. L. Tapondjou, E. Abou-Mansour, H. Stoeckli-Evans, P. Tane, and L. Barboni, “Bafoudiosbulbins F and G, further clerodane diterpenoids from Dioscorea bulbifera L. var sativa and revised structure of Bafoudiosbulbin B,” Phytochemistry, vol. 69, no. 12, pp. 2374–2379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Wij and S. Rangaswami, “Chemical constituents of Dioscorea bulbifera isolation and structure of a new dihydro phenanthrene 2,4,6,7, tetrahydroxy -9,10 dihydro phenanthrene and a new phenanthrene 2,4,5,6 tetra hydroxy phenanthrene,” Indian Journal of Chemistry Section B, vol. 16, no. 7, pp. 643–644, 1978. View at Google Scholar
  54. M. R. Bhandari, T. Kasai, and J. Kawabata, “Nutritional evaluation of wild yam (Dioscorea spp.) tubers of Nepal,” Food Chemistry, vol. 82, no. 4, pp. 619–623, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. R. Bhandari and J. Kawabata, “Assessment of antinutritional factors and bioavailability of calcium and zinc in wild yam (Dioscorea spp.) tubers of Nepal,” Food Chemistry, vol. 85, no. 2, pp. 281–287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. A. R. Shahverdi, E. A. D. Haratifar, H. R. Shahverdi et al., “Semi-biosynthesis of magnetite-gold composite nanoparticles using an ethanol extract of Eucalyptus camaldulensis and study of the surface chemistry,” Journal of Nanomaterials, vol. 2009, Article ID 962021, 2009. View at Publisher · View at Google Scholar
  57. T. Komori, “Glycosides from Dioscorea bulbifera,” Toxicon, vol. 35, no. 10, pp. 1531–1535, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Socrates, Infrared and Raman Characteristic Group Frequencies, John Wiley & sons, 3rd edition, 2001.
  59. B. Ankamwar, “Biosynthesis of gold nanoparticles using leaf extract,” E-Journal of Chemistry, vol. 7, no. 4, pp. 1334–1339, 2010. View at Google Scholar · View at Scopus
  60. S. Chen and K. Kimura, “Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water,” Langmuir, vol. 15, no. 4, pp. 1075–1082, 1999. View at Google Scholar · View at Scopus