Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 391596, 5 pages
http://dx.doi.org/10.1155/2011/391596
Research Article

Mechanical Properties of Chitosan-Starch Composite Filled Hydroxyapatite Micro- and Nanopowders

1School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
2Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshty University of Medical Sciences, Tehran, Iran
3Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran

Received 30 April 2011; Revised 4 July 2011; Accepted 4 July 2011

Academic Editor: Donglu Shi

Copyright © 2011 Jafar Ai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Cengiz, Y. Gokce, N. Yildiz et al., “Synthesis and characterization of hydroxyapatite nanoparticles,” Colloids and Surfaces A, vol. 322, no. 1–3, pp. 29–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Larsen and S. J. Jensen, “Solubility, unit cell dimensions and crystallinity of fluoridated human dental enamel,” Archives of Oral Biology, vol. 34, no. 12, pp. 969–973, 1989. View at Google Scholar · View at Scopus
  3. M. J. Finkelstein and G. H. Nancollas, “Trace fluoride and its role in enamel mineralization,” Journal of Biomedical Materials Research, vol. 14, no. 4, pp. 533–535, 1980. View at Google Scholar · View at Scopus
  4. R. Z. Legeros, L. M. Silverstone, G. Daculsi, and L. M. Kerebel, “In vitro caries-like lesion formation in F-containing tooth enamel,” Journal of Dental Research, vol. 62, no. 2, pp. 138–144, 1983. View at Google Scholar · View at Scopus
  5. J. Shackelford, Bioceramics (Advanced Ceramics), Prentice Hall, New Jersey, NJ, USA, 1992.
  6. B. Ratner, D. Hoffman, F. Schoen, and J. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Academic press, San Diego, Calif, USA, 1996.
  7. A. H. Reddi, “Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials,” Tissue Engineering, vol. 6, no. 4, pp. 351–359, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. P. Fisher and A. H. Reddi, Functional Topics in Tissue Engineering of Bone: Signals and Scaffolds, Topics in Tissue English, Edited by N. Ashama Ki and P. Ferreti, 2003.
  9. I. S. Kim and P. N. Kumta, “Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder,” Materials Science and Engineering B, vol. 111, no. 2-3, pp. 232–236, 2004. View at Publisher · View at Google Scholar
  10. M. F. Cerera, J. Heinamaki, K. krogars, and C. Jorgensen Anna, “Solid-state and mechanical Properties of aqueous chitosan-amylose starch films plasticized with polyls,” AAPS Pharmaceutical Science and Technology, no. 1, article 5, 2004. View at Google Scholar
  11. A. Lazaridou and C. G. Biliaderis, “Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition,” Carbohydrate Polymers, vol. 48, no. 2, pp. 179–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Mano, D. Koniarova, and R. Reis, “Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability,” Journal of Materials Science, vol. 14, no. 2, pp. 127–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. E. T. Baran, J. F. Mano, and R. Reis, “Starch-chitosan hydrogels prepared by reductive alkylation cross-linking,” Journal of Materials Science, vol. 15, no. 7, pp. 759–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Kokubo, H. M. Kim, M. Kawashita, and T. Nakamura, “Novel ceramics for biomedical applications,” The Australian Ceramic Society, vol. 36, pp. 37–46, 2000. View at Google Scholar
  15. R. L. Reis, S. C. Mendes, A. M. Cunha, and M. J. Bevis, “Processing and in vitro degradation of starch/EVOH thermoplastic blends,” Polymer International, vol. 43, no. 4, pp. 347–352, 1997. View at Google Scholar · View at Scopus
  16. R. L. Reis, A. M. Cunha, and M. J. Bevis, “Structure development and control of injection-molded hydroxylapatite-reinforced starch/EVOH composites,” Advances in Polymer Technology, vol. 16, no. 4, pp. 263–277, 1997. View at Google Scholar
  17. S. H. Pak and C. Caze, “Acid-base interactions on interfacial adhesion and mechanical responses for glass-fiber-reinforced low-density polyethylene,” Journal of Applied Polymer Science, vol. 65, no. 1, pp. 143–153, 1997. View at Google Scholar
  18. Z. Demjen, B. Pukanszky, and J. Nagy, “Possible coupling reactions of functional silanes and polypropylene,” Polymer, vol. 40, no. 7, pp. 1763–1773, 1999. View at Publisher · View at Google Scholar
  19. M. L. Gaillard, J. van der Brink, C. A. van Blitterswijk, and Z. B. Luklinska, “Applying a calcium phosphate layer on PEO/PBT copolymers affects bone formation in vivo,” Journal of Materials Science, vol. 5, no. 6-7, pp. 424–428, 1994. View at Publisher · View at Google Scholar
  20. J. I. Velasco, J. A. de Saja, and A. B. Martínez, “Crystallization behavior of polypropylene filled with surface-modified talc,” Journal of Applied Polymer Science, vol. 61, no. 1, pp. 125–132, 1996. View at Google Scholar
  21. M. Tanoglu, S. H. McKnight, G. R. Palmese, and J. W. Gillespie, “Use of silane coupling agents to enhance the performance of adhesively bonded alumina to resin hybrid composites,” International Journal of Adhesion and Adhesives, vol. 18, no. 6, pp. 431–434, 1998. View at Google Scholar
  22. W. Qiu, M. Kancheng, and H. Zeng, “Effect of macromolecular coupling agent on the property of PP/GF composites,” Journal of Applied Polymer Science, vol. 71, no. 10, pp. 1537–1542, 1999. View at Google Scholar
  23. G. T. Hermanson, “Bioconjugate Techniques,” Academic Press, San Diego, California, p. 116, 1996. View at Google Scholar