Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 413079, 10 pages
Research Article

Dynamics of Spreading and Alignment of Cells Cultured In Vitro on a Grooved Polymer Surface

1Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria
2Department of Pharmacology and Toxicology, University of Vienna, 1090 Vienna, Austria
3Institute of Biophysics, Johannes Kepler University Linz, 4040 Linz, Austria

Received 21 April 2010; Revised 28 June 2010; Accepted 7 July 2010

Academic Editor: Lu Sun

Copyright © 2011 Thomas Peterbauer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We used mechanically embossed polyester films to analyze the dynamics of cell alignment and cell-specific factors modulating the response of Chinese hamster ovary (CHO) cells and of a rat myogenic cell line to the surface topography. The films used had grooves with a periodicity of approximately 750 nm and a depth of 150 nm. Both cell lines responded to the topographical feature. On unpatterned control areas, cells of both lines showed a random distribution with orientation angles close to . Both cell types exhibited an elongated morphology on the patterned surface. CHO cells typically showed bipolar spreading. Their contact area increased almost exclusively along the groove direction. Likewise, freshly seeded rat myoblasts displayed protrusions emerging in parallel with the grooves. However, myoblasts frequently had more than two sites with plasma protrusions pulling the cells along different grooves. They could also develop lamellipodia expanding without a preferred direction and long filopodia.