Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 473516, 8 pages
http://dx.doi.org/10.1155/2011/473516
Research Article

Some Observations on Carbon Nanotubes Susceptibility to Cell Phagocytosis

1Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, al Mickiewicza 30, 30-059 Krakow, Poland
2Department of Cytobiology, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-068 Krakow, Poland

Received 30 September 2010; Accepted 30 December 2010

Academic Editor: Xiaojun Yu

Copyright © 2011 Aneta Fraczek-Szczypta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Schrand, L. Dai, J. J. Schlager, S. M. Hussain, and E. Osawa, “Differential biocompatibility of carbon nanotubes and nanodiamonds,” Diamond and Related Materials, vol. 16, no. 12, pp. 2118–2123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Xu, M. Yudasaka, S. Kouraba, M. Sekido, Y. Yamamoto, and S. Iijima, “Single wall carbon nanohorn as a drug carrier for controlled release,” Chemical Physics Letters, vol. 461, no. 4-6, pp. 189–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. B. S. Harrison and A. Atala, “Carbon nanotube applications for tissue engineering,” Biomaterials, vol. 28, no. 2, pp. 344–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. P. Firme and P. R. Bandaru, “Toxicity issues in the application of carbon nanotubes to biological systems,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 2, pp. 245–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Shi, B. Sitharaman, Q. P. Pham et al., “Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering,” Biomaterials, vol. 28, no. 28, pp. 4078–4090, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Matsumoto, C. Sato, Y. Naka, A. Kitazawa, R. L. D. Whitby, and N. Shimizu, “Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes,” Journal of Bioscience and Bioengineering, vol. 103, no. 3, pp. 216–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Fraczek, E. Menaszek, C. Paluszkiewicz, and M. Blazewicz, “Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes,” Acta Biomaterialia, vol. 4, no. 6, pp. 1593–1602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Poland, R. Duffin, I. Kinloch et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, vol. 3, no. 7, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. A. A. Shvedova, V. Castranova, E. R. Kisin et al., “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” Journal of Toxicology and Environmental Health Part A, vol. 66, no. 20, pp. 1909–1926, 2003. View at Google Scholar · View at Scopus
  10. D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, and T. R. Webb, “Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats,” Toxicological Sciences, vol. 77, no. 1, pp. 117–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. V. E. Kagan, H. Bayir, and A. A. Shvedova, “Nanomedicine and nanotoxicology: two sides of the same coin,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 1, no. 4, pp. 313–316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Bianco, K. Kostarelos, C. D. Partidos, and M. Prato, “Biomedical applications of functionalised carbon nanotubes,” Chemical Communications, no. 5, pp. 571–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Sato, A. Yokoyama, K. I. Shibata et al., “Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo,” Molecular BioSystems, vol. 1, no. 2, pp. 176–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Wick, P. Manser, L. K. Limbach et al., “The degree and kind of agglomeration affect carbon nanotube cytotoxicity,” Toxicology Letters, vol. 168, no. 2, pp. 121–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. L. Aillon, Y. Xie, N. El-Gendy, C. J. Berkland, and M. L. Forrest, “Effects of nanomaterial physicochemical properties on in vivo toxicity,” Advanced Drug Delivery Reviews, vol. 61, no. 6, pp. 457–466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. M. V. Raja, J. Connolley, G. P. Ganesan et al., “Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells,” Toxicology Letters, vol. 169, no. 1, pp. 51–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, “Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells,” Journal of the American Chemical Society, vol. 126, no. 48, pp. 15638–15639, 2004. View at Google Scholar · View at Scopus
  18. R. Singh, D. Pantarotto, D. McCarthy et al., “Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors,” Journal of the American Chemical Society, vol. 127, no. 12, pp. 4388–4396, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Ajima, M. Yudasaka, T. Murakami, A. Maigné, K. Shiba, and S. Iijima, “Carbon nanohorns as anticancer drug carriers,” Molecular Pharmaceutics, vol. 2, no. 6, pp. 475–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Bottini, S. Bruckner, K. Nika et al., “Multi-walled carbon nanotubes induce T lymphocyte apoptosis,” Toxicology Letters, vol. 160, no. 2, pp. 121–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, “Comparative study of carbon nanotube dispersion using surfactants,” Journal of Colloid and Interface Science, vol. 328, no. 2, pp. 421–428, 2008. View at Google Scholar · View at Scopus
  22. N. A. Monteiro-Riviere, A. O. Inman, Y. Y. Wang, and R. J. Nemanich, “Surfactant effects on carbon nanotube interactions with human keratinocytes,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 1, no. 4, pp. 293–299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Su, W. T. Chiang, C. C. Lin, and M. Yokoyama, “Multi-wall carbon nanotubes: purification, morphology and field emission performance,” Physica E, vol. 40, no. 7, pp. 2322–2326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. V. Datsyuk, M. Kalyva, K. Papagelis et al., “Chemical oxidation of multiwalled carbon nanotubes,” Carbon, vol. 46, no. 6, pp. 833–840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Liu, A. G. Rinzler, H. Dai et al., “Fullerene pipes,” Science, vol. 280, no. 5367, pp. 1253–1256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. E. B. Barros, A. G. S. Filho, V. Lemos et al., “Charge transfer effects in acid treated single-wall carbon nanotubes,” Carbon, vol. 43, no. 12, pp. 2495–2500, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Tucknott and S. N. Yaliraki, “Aggregation properties of carbon nanotubes at interfaces,” Chemical Physics, vol. 281, no. 2-3, pp. 455–463, 2002. View at Publisher · View at Google Scholar · View at Scopus