Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 515049, 13 pages
http://dx.doi.org/10.1155/2011/515049
Research Article

Towards a Reproducible Synthesis of High Aspect Ratio Gold Nanorods

1Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
2Polymer Technology, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland

Received 29 April 2010; Accepted 18 July 2010

Academic Editor: Quanqin Dai

Copyright © 2011 Susanne Koeppl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods,” Journal of Physical Chemistry B, vol. 105, no. 19, pp. 4065–4067, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Yu, S. Chang, C. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” Journal of Physical Chemistry B, vol. 101, no. 34, pp. 6661–6664, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. X. C. Jiang and M. P. Pileni, “Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control,” Colloids and Surfaces A, vol. 295, no. 1–3, pp. 228–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. K. Sau and C. J. Murphy, “Seeded high yield synthesis of short Au nanorods in aqueous solution,” Langmuir, vol. 20, no. 15, pp. 6414–6420, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chemistry of Materials, vol. 15, no. 10, pp. 1957–1962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Gao, C. M. Bender, and C. J. Murphy, “Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution,” Langmuir, vol. 19, no. 21, pp. 9065–9070, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. X. C. Jiang, A. Brioude, and M. P. Pileni, “Gold nanorods: limitations on their synthesis and optical properties,” Colloids and Surfaces A, vol. 277, no. 1–3, pp. 201–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. K. Smith and B. A. Korgel, “The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods,” Langmuir, vol. 24, no. 3, pp. 644–649, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. D. K. Smith, N. R. Miller, and B. A. Korgel, “Iodide in CTAB prevents gold nanorod formation,” Langmuir, vol. 25, no. 16, pp. 9518–9524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. B. D. Busbee, S. O. Obare, and C. J. Murphy, “An improved synthesis of high-aspect-ratio gold nanorods,” Advanced Materials, vol. 15, no. 5, pp. 414–416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H.-Y. Wu, W.-L. Huang, and M. H. Huang, “Direct high-yield synthesis of high aspect ratio gold nanorods,” Crystal Growth and Design, vol. 7, no. 4, pp. 831–835, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. J. Park, C. S. Ah, W.-J. Kim, I. S. Choi, K.-P. Lee, and W. S. Yun, “Temperature-induced control of aspect ratio of gold nanorods,” Journal of Vacuum Science and Technology A, vol. 24, no. 4, pp. 1323–1326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Kang, S. Chah, C. Y. Yun, and J. Yi, “Aspect ratio controlled synthesis of gold nanorods,” Korean Journal of Chemical Engineering, vol. 20, no. 6, pp. 1145–1148, 2003. View at Google Scholar · View at Scopus
  14. A. Gole and C. J. Murphy, “Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed,” Chemistry of Materials, vol. 16, no. 19, pp. 3633–3640, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Wirtz, S. Yu, and C. R. Martin, “Template synthesized gold nanotube membranes for chemical separations and sensing,” Analyst, vol. 127, no. 7, pp. 871–879, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chemistry of Materials, vol. 8, no. 8, pp. 1739–1746, 1996. View at Google Scholar · View at Scopus
  17. S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R.C. Wang, “The shape transition of gold nanorods,” Langmuir, vol. 15, no. 3, pp. 701–709, 1999. View at Google Scholar · View at Scopus
  18. F.-K. Liu, Y.-C. Chang, F.-H. Ko, and T.-C. Chu, “Microwave rapid heating for the synthesis of gold nanorods,” Materials Letters, vol. 58, no. 3-4, pp. 373–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Pérez-Juste, L. M. Liz-Marzán, S. Carnie, D. Y. C. Chan, and P. Mulvaney, “Electric-field-directed growth of gold nanorods in aqueous surfactant solutions,” Advanced Functional Materials, vol. 14, no. 6, pp. 571–579, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. N. R. Jana, L. Gearheart, and C. J. Murphy, “Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles,” Chemistry of Materials, vol. 13, no. 7, pp. 2313–2322, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Pérez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coordination Chemistry Reviews, vol. 249, no. 17-18, pp. 1870–1901, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. B. M. I. Van Der Zande, L. Pagès, R. A. M. Hikmet, and A. Van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” Journal of Physical Chemistry B, vol. 103, no. 28, pp. 5761–5767, 1999. View at Google Scholar · View at Scopus
  23. S. Eustis and M. El-Sayed, “Aspect ratio dependence of the enhanced fluorescence intensity of gold nanorods: experimental and simulation study,” Journal of Physical Chemistry B, vol. 109, no. 34, pp. 16350–16356, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, and L. M. Liz-Marzán, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Advanced Functional Materials, vol. 15, no. 7, pp. 1065–1071, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Eustis and M. A. El-Sayed, “Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum,” Journal of Applied Physics, vol. 100, no. 4, Article ID 044324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. Wei, A. Ji, and J. Shen, “PH controlled synthesis of high aspect-ratio gold nanorods,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 11, pp. 5708–5714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. P. Khanal and E. R. Zubarev, “Purification of high aspect ratio gold nanorods: complete removal of platelets,” Journal of the American Chemical Society, vol. 130, no. 38, pp. 12634–12635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. K. Kang, Y. Kim, M. S. Hahn, I. Choi, J. Lee, and J. Yi, “Aspect ratio control of Au nanorods via temperature and hydroxylamine concentration of reaction medium,” Current Applied Physics, vol. 6, no. 1, pp. e114–e120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. J. Murphy and C. J. Orendorff, “Alignment of gold nanorods in polymer composites and on polymer surfaces,” Advanced Materials, vol. 17, no. 18, pp. 2173–2177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Kim, K. Sohn, J. Wu, and J. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” Journal of the American Chemical Society, vol. 130, no. 44, pp. 14442–14443, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Park, H. Koerner, and R. A. Vaia, “Depletion-induced shape and size selection of gold nanoparticles,” Nano Letters, vol. 10, no. 4, pp. 1433–1439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. K. Raman, M. T. Anderson, and C. J. Brinker, “Template-based approaches to the preparation of amorphous, nanoporous silicas,” Chemistry of Materials, vol. 8, no. 8, pp. 1682–1701, 1996. View at Google Scholar · View at Scopus
  33. R. Gans, “Über die Form ultramikroskopischer Goldteilchen,” Annalen der Physik, vol. 342, pp. 881–900, 1912, Drude’s Ann. Vol. 37, PP. 881–900, 1912. View at Google Scholar
  34. D. I. Uhlenhaut, P. Smith, and W. Caseri, “Color switching in gold—polysiloxane elastomeric nanocomposites,” Advanced Materials, vol. 18, no. 13, pp. 1653–1656, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Mie, “Beiträge zur Optik rüber Medien, speziell kolloidaler Metallösungen,” Annalen der Physik, vol. 330, pp. 377–445, 1908, Drude’s Ann., Vol. 25, pp. 377–445, 1908. View at Google Scholar
  36. J. C Seferis, “Refractive indices of Polymers,” in Polymer Handbook, J. Brandrup and E. H. Immergut, Eds., pp. VI/451–VI/461, Wiley, New York, NY, USA, 1989. View at Google Scholar