Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 523638, 6 pages
http://dx.doi.org/10.1155/2011/523638
Research Article

Fluoride Nanoscintillators

1Center for Optical Materials Science and Engineering Technologies (COMSET), School of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
2Physics Department, Oklahoma State University, Stillwater, OK 74078, USA
3Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29625-6510, USA

Received 10 May 2010; Revised 23 July 2010; Accepted 28 September 2010

Academic Editor: Quanqin Dai

Copyright © 2011 Luiz G. Jacobsohn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Derenzo, W. W. Moses, J. L. Cahoon, R. C. C. Perera, and J. E. Litton, “Prospects for new inorganic scintillators,” IEEE Transactions on Nuclear Science, vol. 37, no. 1, pp. 203–208, 1990. View at Google Scholar · View at Scopus
  2. G. Blasse, “Search for new inorganic scintillators,” IEEE Transactions on Nuclear Science, vol. 38, no. 1, pp. 30–31, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ishii and M. Kobayashi, “Single crystals for radiation detectors,” Progress in Crystal Growth and Characterization of Materials, vol. 23, pp. 245–311, 1992. View at Google Scholar · View at Scopus
  4. G. Blasse, “Scintillator materials,” Chemistry of Materials, vol. 6, no. 9, pp. 1465–1475, 1994. View at Google Scholar · View at Scopus
  5. G. Blasse, “Luminescent materials: is there still news?” Journal of Alloys and Compounds, vol. 225, no. 1-2, pp. 529–533, 1995. View at Google Scholar · View at Scopus
  6. S. E. Derenzo, M. J. Weber, E. Bourret-Courchesne, and M. K. Klintenberg, “The quest for the ideal inorganic scintillator,” Nuclear Instruments and Methods in Physics Research A, vol. 505, no. 1-2, pp. 111–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. B. D. Milbrath, A. J. Peurrung, M. Bliss, and W. J. Weber, “Radiation detector materials: an overview,” Journal of Materials Research, vol. 23, no. 10, pp. 2561–2581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Chander, “Development of nanophosphors—a review,” Materials Science and Engineering R: Reports, vol. 49, no. 5, pp. 113–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Li and J. Lin, “Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application,” Journal of Materials Chemistry, vol. 20, no. 33, pp. 6831–6847, 2010. View at Publisher · View at Google Scholar
  10. C. Zhang, C. Li, C. Peng et al., “Facile and controllable synthesis of monodisperse CaF2 and CaF2:Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers,” Chemistry, vol. 16, no. 19, pp. 5672–5680, 2010. View at Publisher · View at Google Scholar
  11. C. Li, J. Yang, P. Yang, H. Lian, and J. Lin, “Hydrothermal synthesis of lanthanide fluorides LnF3 (Ln = la to Lu) nano-/microcrystals with multiform structures and morphologies,” Chemistry of Materials, vol. 20, no. 13, pp. 4317–4326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Quan, D. Yang, P. Yang et al., “Uniform colloidal alkaline earth metal fluoride nanocrystals: nonhydrolytic synthesis and luminescence properties,” Inorganic Chemistry, vol. 47, no. 20, pp. 9509–9517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Li, Z. Quan, J. Yang, P. Yang, and J. Lin, “Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties,” Inorganic Chemistry, vol. 46, no. 16, pp. 6329–6337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. L. Wang, Z. W. Quan, P. Y. Jia et al., “A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles,” Chemistry of Materials, vol. 18, no. 8, pp. 2030–2037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. W. Stouwdam and F. C. J. M. van Veggel, “Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification,” Langmuir, vol. 20, no. 26, pp. 11763–11771, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kömpe, O. Lehmann, and M. Haase, “Spectroscopic distinction of surface and volume ions in cerium(III)- and terbium(III)-containing core and core/shell nanoparticles,” Chemistry of Materials, vol. 18, no. 18, pp. 4442–4446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. Cooke, J.-K. Lee, B. L. Bennett et al., “Luminescent properties and reduced dimensional behavior of hydrothermally prepared Y2SiO5: Ce nanophosphors,” Applied Physics Letters, vol. 88, no. 10, Article ID 103108, 3 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. E. Muenchausen, L. G. Jacobsohn, B. L. Bennett, E. A. McKigney, J. F. Smith, and D. W. Cooke, “A novel method for extracting oscillator strength of select rare-earth ion optical transitions in nanostructured dielectric materials,” Solid State Communications, vol. 139, no. 10, pp. 497–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Chen, G. Huang, H. Lu, D. E. McCready, A. G. Joly, and J.-O. Bovin, “Utilizing nanofabrication to construct strong, luminescent materials,” Nanotechnology, vol. 17, no. 10, pp. 2595–2601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. I. H. Campbell and B. K. Crone, “Quantum-dot/organic semiconductor composites for radiation detection,” Advanced Materials, vol. 18, no. 1, pp. 77–79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. E. Létant and T.-F. Wang, “Semiconductor quantum dot scintillation under γ-ray irradiation,” Nano Letters, vol. 6, no. 12, pp. 2877–2880, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. McKigney, R. E. Del Sesto, L. G. Jacobsohn et al., “Nanocomposite scintillators for radiation detection and nuclear spectroscopy,” Nuclear Instruments and Methods in Physics Research A, vol. 579, no. 1, pp. 15–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. J. A. Johnson, S. Schweizer, B. Henke et al., “Eu-activated fluorochlorozirconate glass-ceramic scintillators,” Journal of Applied Physics, vol. 100, no. 3, Article ID 034701, 5 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. S. Zhao, Z. Yu, A. Douraghy, A. F. Chatziioannou, Y. Mo, and Q. Pei, “A facile route to bulk high-Z polymer composites for gamma ray scintillation,” Chemical Communications, no. 45, pp. 6008–6010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. E. A. Mckigney, R. E. Muenchausen, D. W. Cooke et al., “LaFM3:Ce nanocomposite scintillator for gamma-ray detection,” in Hard X-Ray and Gamma-Ray Detector Physics IX, vol. 6706 of Proceedings of SPIE, San Diego, Calif, USA, August 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Lempicki, A. J. Wojtowicz, and E. Berman, “Fundamental limits of scintillator performance,” Nuclear Instruments and Methods in Physics Research A, vol. 333, no. 2-3, pp. 304–311, 1993. View at Google Scholar · View at Scopus
  27. P. A. Rodnyi, Physical Processes in Inorganic Scintillators, CRC Press, Boca Raton, Fla, USA, 1997.
  28. W. W. Moses and S. E. Derenzo, “The scintillation properties of cerium-doped lanthanum fluoride,” Nuclear Instruments and Methods in Physics Research A, vol. 299, no. 1–3, pp. 51–56, 1990. View at Google Scholar · View at Scopus
  29. P. Dorenbos, J. T. M. de Haas, and C. W. E. van Eijk, “The intensity of the 173 nm emission of LaF3: Nd3+ scintillation crystals,” Journal of Luminescence, vol. 69, no. 4, pp. 229–233, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. J. M. van Veggel, “Lanthanide-doped nanoparticles with excellent luminescent properties in organic media,” Chemistry of Materials, vol. 15, no. 24, pp. 4604–4616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. DiMaio, B. Kokuoz, T. L. James, and J. Ballato, “Structural determination of light-emitting inorganic nanoparticles with complex core/shell architectures,” Advanced Materials, vol. 19, no. 20, pp. 3266–3270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. J. R. DiMaio, C. Sabatier, B. Kokuoz, and J. Ballato, “Controlling energy transfer between multiple dopants within a single nanoparticle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 6, pp. 1809–1813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. R. DiMaio, B. Kokuoz, and J. Ballato, “White light emissions through down-conversion of rare-earth doped LaF3 nanoparticles,” Optics Express, vol. 14, no. 23, pp. 11412–11417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. DiMaio, B. Kokuoz, T. L. James, T. Harkey, D. Monofsky, and J. Ballato, “Photoluminescent characterization of atomic diffusion in core-shell nanoparticles,” Optics Express, vol. 16, no. 16, pp. 11769–11775, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Sudarsan, F. C. J. M. van Veggel, R. A. Herring, and M. Raudsepp, “Surface Eu3+ ions are different than "bulk" Eu3+ ions in crystalline doped LaF3 nanoparticles,” Journal of Materials Chemistry, vol. 15, no. 13, pp. 1332–1342, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. L. G. Jacobsohn, C. J. Kucera, T. L. James et al., “Preparation and characterization of rare earth doped fluoride nanoparticles,” Materials, vol. 3, pp. 2053–2068, 2010. View at Google Scholar
  37. D. Pi, F. Wang, X. Fan, M. Wang, and Y. Zhang, “Luminescence behavior of Eu3+ doped LaF3 nanoparticles,” Spectrochimica Acta A, vol. 61, no. 11-12, pp. 2455–2459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Z.-L. Wang, H. L. W. Chan, H.-L. Li, and J. H. Hao, “Highly efficient low-voltage cathodoluminescence of LaF3: Ln3+ (Ln= Eu3+, Ce3+, Tb3+) spherical particles,” Applied Physics Letters, vol. 93, no. 14, Article ID 141106, 3 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Visser, P. Dorenbos, C. W. E. van Eijk, A. Meijerink, G. Blasse, and H. W. den Hartog, “Energy transfer processes involving different luminescence centres in BaF2:Ce,” Journal of Physics: Condensed Matter, vol. 5, no. 11, pp. 1659–1680, 1993. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Kh. Batygov, L. S. Bolyasnikova, V. A. Demidenko et al., “BaF2:Ce3+ scintillation ceramics,” Doklady Physics, vol. 53, no. 9, pp. 485–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Visser, P. Dorenbos, C. W. E. van Eijk, R. W. Hollander, and P. Schotanus, “Scintillation properties of Ce3+ doped BaF2 crystals,” IEEE Transactions on Nuclear Science, vol. 38, no. 2, pp. 178–183, 1991. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Schwartz, Atomic Physics Methods in Modern Research, Springer, Berlin, Germany, 1997.
  43. E. L. Benitez, D. E. Husk, S. E. Schnatterly, and C. Tarrio, “A surface recombination model applied to large features in inorganic phosphor efficiency measurements in the soft X-ray region,” Journal of Applied Physics, vol. 70, no. 6, pp. 3256–3260, 1991. View at Publisher · View at Google Scholar · View at Scopus
  44. V. B. Mikhailik, H. Kraus, G. Miller, M. S. Mykhaylyk, and D. Wahl, “Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations,” Journal of Applied Physics, vol. 97, no. 8, Article ID 083523, 8 pages, 2005. View at Publisher · View at Google Scholar