Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 579427, 7 pages
http://dx.doi.org/10.1155/2011/579427
Research Article

Characterizations of InN Thin Films Grown on Si (110) Substrate by Reactive Sputtering

Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

Received 19 February 2011; Revised 18 April 2011; Accepted 21 May 2011

Academic Editor: Gong Ru Lin

Copyright © 2011 M. Amirhoseiny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride,” Journal of Applied Physics, vol. 59, no. 9, pp. 3241–3244, 1986. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Wu, W. Walukiewicz, K. M. Yu et al., “Small band gap bowing in In1xGaxN alloys,” Applied Physics Letters, vol. 80, no. 25, pp. 4741–4743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. V. Shubina, S. V. Ivanov, V. N. Jmerik et al., “Mie Resonances, Infrared Emission, and the Band Gap of InN,” Physical Review Letters, vol. 92, no. 11, pp. 117407-1–117407-4, 2004. View at Publisher · View at Google Scholar
  4. O. Takai, K. Ikuta, and Y. Inoue, “Growth and nanostructure of InN thin films deposited by reactive magnetron sputtering,” Thin Solid Films, vol. 318, no. 1-2, pp. 148–150, 1998. View at Google Scholar · View at Scopus
  5. T. Yamaguchi, K. Mizuo, Y. Saito, T. Noguchi, T. Araki, and Y. Nanishi, “Single crystalline InN films grown on Si substrates by using a brief substrate nitridation process materials,” Materials Research Society Symposium Proceedings, vol. 743, pp. L3.26.1–L3.26.6, 2003. View at Google Scholar · View at Scopus
  6. F. Ruiz-Zepeda, O. Contreras, A. Dadgar, and A. Krost, “Microstructure of gallium nitride films grown on silicon (110),” Applied Physics Letters, vol. 96, no. 23, Article ID 231908, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Motlan, E. M. Goldys, and T. L. Tansley, “Optical and electrical properties of InN grown by radio-frequency reactive sputtering,” Journal of Crystal Growth, vol. 241, no. 1-2, pp. 165–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Guo, N. Shingai, M. Nishio, and H. Ogawa, “Deposition of InN thin films by radio frequency magnetron sputtering,” Journal of Crystal Growth, vol. 189-190, pp. 466–470, 1998. View at Google Scholar · View at Scopus
  9. Q. Guo, N. Shingai, Y. Mitsuishi, M. Nishio, and H. Ogawa, “Effects of nitrogen/argon ratio on composition and structure of InN films prepared by r.f. magnetron sputtering,” Thin Solid Films, vol. 343-344, no. 1-2, pp. 524–527, 1999. View at Google Scholar · View at Scopus
  10. S. Inoue, T. Namazu, T. Suda, and K. Koterazawa, “InN films deposited by rf reactive sputtering in pure nitrogen gas,” Vacuum, vol. 74, no. 3-4, pp. 443–448, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Kern and D. Puotinen, “Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology,” RCA Review, vol. 31, pp. 187–206, 1970. View at Google Scholar
  12. J. Li, S. Wu, and J. Kang, “ZnO films deposited by RF magnetron sputtering,” in Proceedings of the 13th IEEE Semiconducting and Semi-Insulating Materials Conference (SIMC '04), pp. 77–80, September 2004. View at Publisher · View at Google Scholar
  13. D. Yu, S. H. Yu, S. Zhang, J. Zuo, D. Wang, and Y. Qian, “Metastable hexagonal In2O3 nanofibers templated from InOOH nanofibers under ambient pressure,” Advanced Functional Materials, vol. 13, no. 6, pp. 497–501, 2003. View at Publisher · View at Google Scholar
  14. H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, “Preparation of c-axis oriented AIN thin films by low-temperature reactive sputtering,” Japanese Journal of Applied Physics, Part 1, vol. 31, no. 10, pp. 3446–3451, 1992. View at Google Scholar · View at Scopus
  15. M. V. Pelegrini and I. Pereyra, “Characterization of AlN films deposited by r.f. reactive sputtering aiming MEMS applications,” Physica Status Solidi (C), vol. 7, no. 3-4, pp. 840–843, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Strite and H. Morkoc, “GaN, AIN, and InN: a review,” Journal of Vacuum Science & Technology B, vol. 10, no. 4, pp. 1237–1267, 1992. View at Google Scholar
  17. D. Y. Lee, I. S. Kim, and J. S. Song, “Effect of heat treatment on structural characteristics and electric resistance in TaNx thin film deposited by RF sputtering,” Japanese Journal of Applied Physics, Part 1, vol. 41, no. 7, pp. 4659–4662, 2002. View at Google Scholar
  18. P. M. Fauchet, L. Tsybeskov, C. Peng et al., “Light-emitting porous silicon: materials science, properties, and device applications,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 1, no. 4, pp. 1126–1139, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Agulló-Ruedaa, E. E. Mendezb, B. Bojarczukc, and S. Guhac, “Raman spectroscopy of wurtzite InN films grown on Si,” Solid State Communications, vol. 115, pp. 19–21, 2000. View at Google Scholar
  20. M. Kitajima, “Defects in crystals studied by Raman scattering,” Critical Reviews in Solid State and Materials Sciences, vol. 22, no. 4, pp. 275–349, 1997. View at Google Scholar
  21. K. S. Kim and H. W. Kim, “Structural characterization of ZnO thin film grown on Si-based substrates by metal organic chemical vapour deposition,” Journal of Korean Physical Society, vol. 42, pp. 149–153, 2003. View at Google Scholar