Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 728617, 6 pages
http://dx.doi.org/10.1155/2011/728617
Research Article

In Situ Investigation of the Silicon Carbide Particles Sintering

1Key Laboratory of Mechanical Behavior and Design of Materials, Chinese Academy Sciences, University of Science and Technology of China, Hefei 230026, China
2National Center for Nanoscience and Technology of China, Beijing 100190, China

Received 31 May 2010; Accepted 31 July 2010

Academic Editor: Jaetae Seo

Copyright © 2011 Yu Niu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Luchinin and Y. Tairov, “Silicon carbide, a diamond-like material with controllable nanostructure-depending properties,” Nanoindustry, vol. 1, no. 1, pp. 36–40, 2010. View at Google Scholar
  2. R. Yilmaz, “Thermal diffusivity measurement of SiC fibre reinforced BMAS glass ceramic composites exposed mechanical damage,” Journal of the European Ceramic Society, vol. 27, no. 2-3, pp. 1223–1228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Y. Cheong and Z. Lockman, “Growth mechanism of cubic-silicon carbide nanowires,” Journal of Nanomaterials, vol. 2009, Article ID 572865, 5 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. L. Shi, “Solid state sintering (I)—pore microstructural model and thermodynamic stability, densification equation,” Journal of the Chinese Ceramic Society, vol. 25, no. 5, pp. 499–513, 1997. View at Google Scholar
  5. J. L. Shi, “Solid state sintering (II)—relation between coarsening and densification and mass transport path,” Journal of the Chinese Ceramic Society, vol. 25, no. 6, pp. 657–668, 1997. View at Google Scholar
  6. J. L. Shi, “Solid state sintering (III)—experimental study on grain and pore growth, and densification of superfine zirconia powder compacts,” Journal of the Chinese Ceramic Society, vol. 26, no. 1, pp. 1–13, 1998. View at Google Scholar
  7. R. L. Coble, “Initial sintering of alumina and hematite,” Journal of American Ceramic Society, vol. 41, no. 2, pp. 55–62, 1958. View at Google Scholar
  8. R. L. Coble, “Sintering crystalline solids. I. intermediate and final state diffusion models,” Journal of Applied Physics, vol. 32, no. 5, pp. 787–792, 1961. View at Publisher · View at Google Scholar · View at Scopus
  9. R. L. Coble, “Sintering crystalline solids. II. experimental test of diffusion models in powder compacts,” Journal of Applied Physics, vol. 32, no. 5, pp. 793–799, 1961. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Di Michiel, J. M. Merino, D. Fernandez-Carreiras et al., “Fast microtomography using high energy synchrotron radiation,” Review of Scientific Instruments, vol. 76, no. 4, Article ID 043702, 7 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Li, X. Hu, Y. Hu, and Y. Kan, “Synchrotron radiation tomography for reconstruction of layer structures and internal defects of composite materials,” Chinese Journal of Lasers B, vol. 8, no. 6, pp. 503–508, 1999. View at Google Scholar · View at Scopus
  12. A. Vagnon, O. Lame, D. Bouvard, M. Di Michiel, D. Bellet, and G. Kapelski, “Deformation of steel powder compacts during sintering: correlation between macroscopic measurement and in situ microtomography analysis,” Acta Materialia, vol. 54, no. 2, pp. 513–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Olmos, T. Takahashi, D. Bouvard et al., “Analysing the sintering of heterogeneous powder structures by in situ microtomography,” Philosophical Magazine, vol. 89, no. 32, pp. 2949–2965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Xu, X. F. Hu, Y. Niu, J. H. Zhao, and Q. X. Yuan, “In situ observation of grain evolution in ceramic sintering by SR-CT technique,” Transactions of Nonferrous Metals Society of China, vol. 19, no. 3, pp. S684–S688, 2009. View at Google Scholar
  15. P. Grunert, J. Mäurer, and W. Müller-Forell, “Accuracy of stereotactic coordinate transformation using a localisation frame and computed tomographic imaging—part I: influence of the mathematical and physical properties of the CT on the image of the rods of the localisation frame and the determination of their centres,” Neurosurgical Review, vol. 22, no. 4, pp. 173–187, 1999. View at Google Scholar · View at Scopus
  16. T. G. Zhuang, “The theory and arithmetic of computed-tomography,” in CT Reconstruction Algorithm, pp. 30–60, Shanghai Jiao Tong University Press, Shanghai, China, 1992. View at Google Scholar
  17. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, “Digital image processing using Matlab,” in Digital Image Processing, M. D. Yan, Ed., pp. 315–317, Publishing House of Electronics Industry, Beijing, China, 2005. View at Google Scholar
  18. D. L. Johnson, “New method of obtaining volume, grain-boundary, and surface diffusion coefficients from sintering data,” Journal of Applied Physics, vol. 40, no. 1, pp. 192–200, 1969. View at Publisher · View at Google Scholar · View at Scopus
  19. S. L. Kang, “Sintering-densification, grain growth, and microstructure,” in Sintering Theory, J. Hill, Ed., pp. 51–52, Elsevier, London, UK, 2005. View at Google Scholar
  20. J. S. Guo, “Powder sintering theory,” in Sintering Theory, F. Xiao, Ed., pp. 41–43, Metallurgy Industry Press, Beijing, China, 1998. View at Google Scholar
  21. T. Ikegami, “Early-stage sintering in a powder compact of polyhedral particles: I. Models,” Ceramics International, vol. 25, no. 5, pp. 415–424, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Pampuch and J. Lis, “Specific aspects of sintering of micropowders,” Solid State Phenomena, vol. 8-9, pp. 83–93, 1990. View at Google Scholar