Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 834139, 13 pages
http://dx.doi.org/10.1155/2011/834139
Review Article

Application of Quantum Dots in Biological Imaging

Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Received 15 May 2011; Accepted 2 June 2011

Academic Editor: Xing J. Liang

Copyright © 2011 Shan Jin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Alivisatos, “The use of nanocrystals in biological detection,” Nature Biotechnology, vol. 22, no. 1, pp. 47–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. M. Nie, “In vivo molecular and cellular imaging with quantum dots,” Current Opinion in Biotechnology, vol. 16, no. 1, pp. 63–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. X. Michalet, F. F. Pinaud, L. A. Bentolila et al., “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science, vol. 307, no. 5709, pp. 538–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Smith, H. W. Duan, A. M. Mohs, and S. M. Nie, “Bioconjugated quantum dots for in vivo molecular and cellular imaging,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1226–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Konkar, S. Y. Lu, A. Madhukar, S. M. Hughes, and A. P. Alivisatos, “Semiconductor nanocrystal quantum dots on single crystal semiconductor substrates: high resolution transmission electron microscopy,” Nano Letters, vol. 5, no. 5, pp. 969–973, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Xing, Q. Chaudry, C. Shen et al., “Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry,” Nature Protocols, vol. 2, no. 5, pp. 1152–1165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. V. Yezhelyev, A. Al-Hajj, C. Morris et al., “In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots,” Advanced Materials, vol. 19, no. 20, pp. 3146–3151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Smith, S. Dave, S. M. Nie, L. True, and X. Gao, “Multicolor quantum dots for molecular diagnostics of cancer,” Expert Review of Molecular Diagnostics, vol. 6, no. 2, pp. 231–244, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Robe, E. Pic, H. P. Lassalle, L. Bezdetnaya, F. Guillemin, and F. Marchal, “Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice,” BMC Cancer, vol. 8, no. 1, pp. 111–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Takeda, H. Tada, H. Higuchi et al., “In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine,” Breast Cancer, vol. 15, no. 2, pp. 145–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kim, Y. T. Lim, E. G. Soltesz et al., “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nature Biotechnology, vol. 22, no. 1, pp. 93–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. G. Soltesz, S. Kim, R. G. Laurence et al., “Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots,” Annals of Thoracic Surgery, vol. 79, no. 1, pp. 269–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. G. Soltesz, S. Kim, S. W. Kim et al., “Sentinel lymph node mapping of the gastrointestinal tract by using invisible light,” Annals of Surgical Oncology, vol. 13, no. 3, pp. 386–396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. P. Parungo, S. Ohnishi, S. W. Kim et al., “Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging,” Journal of Thoracic and Cardiovascular Surgery, vol. 129, no. 4, pp. 844–850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Ballou, L. A. Ernst, S. Andreko et al., “Sentinel lymph node imaging using quantum dots in mouse tumor models,” Bioconjugate Chemistry, vol. 18, no. 2, pp. 389–396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Diagaradjane, J. M. Orenstein-Cardona, N. E. Colon-Casasnovas et al., “Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe,” Clinical Cancer Research, vol. 14, no. 3, pp. 731–741, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nature Biotechnology, vol. 22, no. 8, pp. 969–976, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. D. S. Lidke, P. Nagy, R. Heintzmann et al., “Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction,” Nature Biotechnology, vol. 22, no. 2, pp. 198–203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. F. Qi and X. H. Gao, “Quantum dot—amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA,” ACS Nano, vol. 2, no. 7, pp. 1403–1410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Sen, T. J. Deerinck, M. H. Ellisman, I. Parker, and M. D. Cahalan, “Quantum dots for tracking dendritic cells and priming an immune response in vitro and in vivo,” PLoS One, vol. 3, no. 9, Article ID e3290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. M. Derfus, W. C. W. Chan, and S. N. Bhatia, “Probing the cytotoxicity of semiconductor quantum dots,” Nano Letters, vol. 4, no. 1, pp. 11–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Hardman, “Toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors,” Environmental Health Perspectives, vol. 114, no. 2, pp. 165–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. N. Guo, W. Liu, J. G. Liang, H. B. Xu, Z. K. He, and X. L. Yang, “Preparation and characterization of novel CdSe quantum dots modified with poly (D, L-lactide) nanoparticles,” Materials Letters, vol. 60, no. 21-22, pp. 2565–2568, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Pan, S. Neuss, A. Leifert et al., “Size-dependent cytotoxicity of gold nanoparticles,” Small, vol. 3, no. 11, pp. 1941–1949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. L. Schipper, Z. Cheng, S. W. Lee et al., “MicroPET-based biodistribution of quantum dots in living mice,” Journal of Nuclear Medicine, vol. 48, no. 9, pp. 1511–1518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Diagaradjane, A. Deorukhkar, J. G. Gelovani, D. M. Maru, and S. Krishnan, “Gadolinium chloride augments tumor-specific imaging of targeted quantum dots in vivo,” ACS Nano, vol. 4, no. 7, pp. 4131–4141, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Q. Chu, X. Song, D. Cheng, S. P. Liu, and J. Zhu, “Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation,” Nanotechnology, vol. 17, no. 13, pp. 3268–3273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Corsi, C. de Palma, M. Colombo et al., “Towards ideal magnetofluorescent nanoparticles for bimodal detection of breast-cancer cells,” Small, vol. 5, no. 22, pp. 2555–2564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Quarta, R. D. Corato, L. Manna, A. Ragusa, and T. Pellegrino, “Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology,” IEEE Transactions on Nanobioscience, vol. 6, no. 4, pp. 298–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. P. N. Prasad, Biophotonics, Wiley-Interscience, Hoboken, NJ, USA, 2003.
  33. H. Wittcoff, B. G. Reuben, and J. S. Plotkin, Industrial organic chemicals, Wiley-Interscience, Hoboken, NJ, USA, 2004.
  34. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec et al., “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” Journal of Physical Chemistry B, vol. 101, no. 46, pp. 9463–9475, 1997. View at Google Scholar · View at Scopus
  35. S. T. Selvan, “Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications,” Biointerphases, vol. 5, no. 3, pp. FA110–FA115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Park, L. Gu, G. Von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Biodegradable luminescent porous silicon nanoparticles for in vivo applications,” Nature Materials, vol. 8, no. 4, pp. 331–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. X. H. Gao and S. M. Nie, “Doping mesoporous materials with multicolor quantum dots,” Journal of Physical Chemistry B, vol. 107, no. 42, pp. 11575–11578, 2003. View at Google Scholar · View at Scopus
  38. F. Erogbogbo, K. T. Yong, I. Roy et al., “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” Nano Letters, vol. 5, no. 1, pp. 413–423, 2011. View at Publisher · View at Google Scholar
  39. W. J. Parak, D. Gerion, D. Zanchet et al., “Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots,” Chemistry of Materials, vol. 14, no. 5, pp. 2113–2119, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Sato and M. T. Swihart, “Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization,” Chemistry of Materials, vol. 18, no. 17, pp. 4083–4088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. R. D. Tilley and K. Yamamoto, “The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals,” Advanced Materials, vol. 18, no. 15, pp. 2053–2056, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. J. H. Warner, A. Hoshino, K. Yamamoto, and R. D. Tilley, “Water-soluble photoluminescent silicon quantum dots,” Angewandte Chemie International Edition, vol. 44, no. 29, pp. 4550–4554, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. L. H. Chen, D. W. McBranch, H. L. Wang, R. Helgeson, F. Wudl, and D. G. Whitten, “Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer,” Proceedings of the National Academy of Sciences, vol. 96, no. 22, pp. 12287–12292, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, “Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles,” Proceedings of the National Academy of Sciences, vol. 100, no. 11, pp. 6297–6301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. J. H. Burroughes, D. D. C. Bradley, A. R. Brown et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539–541, 1990. View at Google Scholar · View at Scopus
  46. R. H. Friend, R. W. Gymer, A. B. Holmes et al., “Electroluminescence in conjugated polymers,” Nature, vol. 397, no. 6715, pp. 121–128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. F. So, B. Krummacher, M. K. Mathai, D. Poplavskyy, S. A. Choulis, and V. E. Choong, “Recent progress in solution processable organic light emitting devices,” Journal of Applied Physics, vol. 102, no. 9, Article ID 091101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. F. Wu, C. Szymanski, and J. McNeill, “Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles,” Langmuir, vol. 22, no. 7, pp. 2956–2960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. C. F. Wu, C. Szymanski, Z. Cain, and J. McNeill, “Conjugated polymer dots for multiphoton fluorescence imaging,” Journal of the American Chemical Society, vol. 129, no. 43, pp. 12904–12905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. F. Wu, B. Bull, C. Szymanski, K. Christensen, and J. McNeill, “Multicolor conjugated polymer dots for biological fluorescence imaging,” ACS Nano, vol. 2, no. 11, pp. 2415–2423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites,” Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706–8715, 1993. View at Google Scholar · View at Scopus
  52. T. Rajh, O. I. Micic, and A. J. Nozik, “Synthesis and characterization of surface-modified colloidal CdTe quantum dots,” Journal of Physical Chemistry, vol. 97, no. 46, pp. 11999–12003, 1993. View at Google Scholar · View at Scopus
  53. C. Ding, Y. Li, and Y. Qu, “Synthesizing quantum dot with uniform grain diameter distribution in water phase comprises preparing molding board agent and cadmium sulfydryl composite precursor, producing water solution of sodium borohydride, and synthesizing quantum dot,” East China Normal University, 2010. View at Google Scholar
  54. M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir, vol. 14, no. 22, pp. 6430–6435, 1998. View at Google Scholar · View at Scopus
  55. H. F. Qian, X. Qiu, L. Li, and J. C. Ren, “Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots,” Journal of Physical Chemistry B, vol. 110, no. 18, pp. 9034–9040, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Pinaud, D. King, H. P. Moore, and S. Weiss, “Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides,” Journal of the American Chemical Society, vol. 126, no. 19, pp. 6115–6123, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Pellegrino, L. Manna, S. Kudera et al., “Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals,” Nano Letters, vol. 4, no. 4, pp. 703–707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. C. A. J. Lin, R. A. Sperling, J. K. Li et al., “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small, vol. 4, no. 3, pp. 334–341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. H. Phan, R. A. Moffitt, T. H. Stokes et al., “Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment,” Trends in Biotechnology, vol. 27, no. 6, pp. 350–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Liu, S. K. Lau, V. A. Varma, B. A. Kairdolf, and S. M. Nie, “Multiplexed detection and characterization of rare tumor cells in Hodgkin's lymphoma with multicolor quantum dots,” Analytical Chemistry, vol. 82, no. 14, pp. 6237–6243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. H. S. Cho, Z. Y. Dong, G. M. Pauletti et al., “Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment,” ACS Nano, vol. 4, no. 9, pp. 5398–5404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. A. Cao, K. Yang, Z. G. Li, C. Zhao, C. M. Shi, and J. Yang, “Near-infrared quantum-dot-based non-invasive in vivo imaging of squamous cell carcinoma U14,” Nanotechnology, vol. 21, no. 47, Article ID 475104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Jiang, A. Singhal, J. N. Zheng, C. Wang, and W. C. W. Chan, “Optimizing the synthesis of red- to near-IR-emitting CdS-capped CdTexSe1-x alloyed quantum dots for biomedical imaging,” Chemistry of Materials, vol. 18, no. 20, pp. 4845–4854, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. W. J. M. Mulder, R. Koole, R. J. Brandwijk et al., “Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe,” Nano Letters, vol. 6, no. 1, pp. 1–6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. W. J. M. Mulder, G. J. Strijkers, G. A. F. V. Tilborg, D. P. Cormode, Z. A. Fayad, and K. Nicolay, “Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging,” Accounts of Chemical Research, vol. 42, no. 7, pp. 904–914, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. J. H. Bang, W. H. Suh, and K. S. Suslick, “Quantum dots from chemical aerosol flow synthesis: preparation, characterization, and cellular imaging,” Chemistry of Materials, vol. 20, no. 12, pp. 4033–4038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. B. R. Hyun, H. Y. Chen, D. A. Rey, F. W. Wise, and C. A. Batt, “Near-infrared fluorescence imaging with water-soluble lead salt quantum dots,” Journal of Physical Chemistry B, vol. 111, no. 20, pp. 5726–5730, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Li, W. Y. Shih, and W. H. Shih, “Synthesis and characterization of aqueous carboxyl-capped CdS quantum dots for bioapplications,” Industrial and Engineering Chemistry Research, vol. 46, no. 7, pp. 2013–2019, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nature Biotechnology, vol. 21, no. 1, pp. 47–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. S. L. Gac, I. Vermes, and A. V. D. Berg, “Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging,” Nano Letters, vol. 6, no. 9, pp. 1863–1869, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Wolcott, D. Gerion, M. Visconte et al., “Silica-coated CdTe quantum dots functionalized with thiols for bioconjugation to IgG proteins,” Journal of Physical Chemistry B, vol. 110, no. 11, pp. 5779–5789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. H. W. Duan and S. M. Nie, “Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings,” Journal of the American Chemical Society, vol. 129, no. 11, pp. 3333–3336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Liu, S. Peng, J. C. Soo, M. Kuang, P. Chen, and H. Duan, “Quantum dots with phenylboronic acid tags for specific labeling of sialic acids on living cells,” Analytical Chemistry, vol. 83, no. 3, pp. 1124–1130, 2011. View at Publisher · View at Google Scholar
  74. F. Q. Chen and D. Gerion, “Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells,” Nano Letters, vol. 4, no. 10, pp. 1827–1832, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Yildiz, B. McCaughan, S. F. Cruickshank, J. F. Callan, and F. M. Raymo, “Biocompatible CdSe-ZnS Core-shell quantum dots coated with hydrophilic polythiols,” Langmuir, vol. 25, no. 12, pp. 7090–7096, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Ruan, A. Agrawal, A. I. Marcus, and S. M. Nie, “Imaging and tracking of Tat peptide-conjugated quantum dots in living cells: new insights into nanoparticle uptake, intracellular transport, and vesicle shedding,” Journal of the American Chemical Society, vol. 129, no. 47, pp. 14759–14766, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Wilson, D. G. Spiller, A. Beckett, I. A. Prior, and V. Sée, “Highly stable dextran-coated quantum dots for biomolecular detection and cellular imaging,” Chemistry of Materials, vol. 22, no. 23, pp. 6361–6369, 2010. View at Publisher · View at Google Scholar
  78. N. Ma, J. Yang, K. M. Stewart, and S. O. Kelley, “DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles,” Langmuir, vol. 23, no. 26, pp. 12783–12787, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. P. Liu, Q. S. Wang, and X. Li, “Studies on CdSe/L-cysteine quantum dots synthesized in aqueous solution for biological labeling,” Journal of Physical Chemistry C, vol. 113, no. 18, pp. 7670–7676, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. C. F. Wu, T. Schneider, M. Zeigler et al., “Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting,” Journal of the American Chemical Society, vol. 132, no. 43, pp. 15410–15417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. P. M. Allen, W. H. Liu, V. P. Chauhan et al., “InAs(ZnCdS) auantum dots optimized for biological imaging in the near-infrared,” Journal of the American Chemical Society, vol. 132, no. 2, pp. 470–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Prabakar, A. Shiohara, S. Hanada, K. Fujioka, K. Yamamoto, and R. D. Tilley, “Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications,” Chemistry of Materials, vol. 22, no. 2, pp. 482–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Sun, H. Y. Zhang, C. Liu et al., “Preparation and characterization of Fe3O4/CdTe magnetic/fluorescent nanocomposites and their applications in immuno-labeling and fluorescent imaging of cancer cells,” Langmuir, vol. 26, no. 2, pp. 1278–1284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. W. J. M. Mulder, R. Koole, R. J. Brandwijk et al., “Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe,” Nano Letters, vol. 6, no. 1, pp. 1–6, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. V. Bagalkot, L. F. Zhang, E. Levy-Nissenbaum et al., “Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-fluorescence resonance energy transfer,” Nano Letters, vol. 7, no. 10, pp. 3065–3070, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Qian, K. T. Yong, I. Roy et al., “Imaging pancreatic cancer using surface-functionalized quantum dots,” Journal of Physical Chemistry B, vol. 111, no. 25, pp. 6969–6972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Erogbogbo, K. T. Yong, I. Roy, G. X. Xu, P. N. Prasad, and M. T. Swihart, “Biocompatible luminescent silicon quantum dots for imaging of cancer cells,” ACS Nano, vol. 2, no. 5, pp. 873–878, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. K. T. Yong, H. Ding, I. Roy et al., “Imaging pancreatic cancer using bioconjugated inp quantum dots,” ACS Nano, vol. 3, no. 3, pp. 502–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Walther, K. Meyer, R. Rennert, and I. Neundorf, “Quantum dot—carrier peptide conjugates suitable for imaging and delivery applications,” Bioconjugate Chemistry, vol. 19, no. 12, pp. 2346–2356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. V. Biju, D. Muraleedharan, K. I. Nakayama et al., “Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells,” Langmuir, vol. 23, no. 20, pp. 10254–10261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. K. C. Weng, C. O. Noble, B. Papahadjopoulos-Sternberg et al., “Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo,” Nano Letters, vol. 8, no. 9, pp. 2851–2857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. R. R. Smith, Z. Cheng, A. De, A. L. Koh, R. Sinclair, and S. S. Gambhir, “Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature,” Nano Letters, vol. 8, no. 9, pp. 2599–2606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. H. S. Choi, W. H. Liu, F. B. Liu et al., “Design considerations for tumour-targeted nanoparticles,” Nature Nanotechnology, vol. 5, no. 1, pp. 42–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Papagiannaros, J. Upponi, W. Hartner, D. Mongayt, T. Levchenko, and V. Torchilin, “Quantum dot loaded immunomicelles for tumor imaging,” BMC Medical Imaging, vol. 10, no. 1, article 22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Li, T. J. Daou, I. Texier, T. T. K. Chi, N. Q. Liem, and P. Reiss, “Highly luminescent cuins 2/ZnS core-shell nanocrystals: cadmium-free quantum dots for in vivo imaging,” Chemistry of Materials, vol. 21, no. 12, pp. 2422–2429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive Imaging of quantum dots in mice,” Bioconjugate Chemistry, vol. 15, no. 1, pp. 79–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. T. J. Daou, L. Li, P. Reiss, V. Josserand, and I. Texier, “Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots,” Langmuir, vol. 25, no. 5, pp. 3040–3044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Yang, Y. A. Cao, C. Shi et al., “Quantum dot-based visual in vivo imaging for oral squamous cell carcinoma in mice,” Oral Oncology, vol. 46, no. 12, pp. 864–868, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. E. Cassette, T. Pons, C. Bouet et al., “Synthesis and characterization of near-infrared Cu-In-Se/ZnS core/shell quantum dots for in vivo imaging,” Chemistry of Materials, vol. 22, no. 22, pp. 6117–6124, 2010. View at Publisher · View at Google Scholar
  101. K. T. Yong, R. Hu, I. Roy et al., “Tumor targeting and imaging in live animals with functionalized semiconductor quantum rods,” ACS Applied Materials & Interfaces, vol. 1, no. 3, pp. 710–719, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. W. Zhang, Y. Yao, and Y. S. Chen, “Imaging and quantifying the morphology and nanoelectrical properties of quantum dot nanoparticles interacting with DNA,” Journal of Physical Chemistry C, vol. 115, no. 3, pp. 599–606, 2011. View at Publisher · View at Google Scholar
  103. Y. X. Huang, X. J. Zheng, L. L. Kang et al., “Quantum dots as a sensor for quantitative visualization of surface charges on single living cells with nano-scale resolution,” Biosensors and Bioelectronics, vol. 26, no. 5, pp. 2114–2118, 2011. View at Publisher · View at Google Scholar · View at Scopus