Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011 (2011), Article ID 853989, 7 pages
http://dx.doi.org/10.1155/2011/853989
Research Article

Pore-Width-Dependent Preferential Interaction of sp2 Carbon Atoms in Cyclohexene with Graphitic Slit Pores by GCMC Simulation

1Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
2Technology Development Devision, TOKYO GAS Co., Ltd., 2-7, Suehirocho 1, Tsurumiku, Yokohama 230-0045, Japan
3Research Center for Exotic NanoCarbon Project, Shinshu University, 4-17-1, Wakasato, Naganoshi 380-8553, Japan

Received 2 June 2010; Accepted 1 November 2010

Academic Editor: Sulin Zhang

Copyright © 2011 Natsuko Kojima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kaneko, C. Ishii, M. Ruike, and H. kuwabara, “Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons,” Carbon, vol. 30, no. 7, pp. 1075–1088, 1992. View at Google Scholar · View at Scopus
  2. T. Ohba, D. Nicholson, and K. Kaneko, “Temperature dependence of micropore filling of N in slit-shaped carbon micropores: experiment and grand canonical Monte Carlo simulation,” Langmuir, vol. 19, no. 14, pp. 5700–5707, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Laine and S. Yunes, “Effect of the preparation method on the pore size distribution of activated carbon from coconut shell,” Carbon, vol. 30, no. 4, pp. 601–604, 1992. View at Google Scholar · View at Scopus
  4. M. M. A. Freitas and J. L. Figueiredo, “Preparation of carbon molecular sieves for gas separations by modification of the pore sizes of activated carbons,” Fuel, vol. 80, no. 1, pp. 1–6, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Gergova and S. Eser, “Effects of activation method on the pore structure of activated carbons from apricot stones,” Carbon, vol. 34, no. 7, pp. 879–888, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. T. J. Bandosz, “Effect of pore structure and surface chemistry of virgin activated carbons on removal of hydrogen sulfide,” Carbon, vol. 37, no. 3, pp. 483–491, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Kyotani, “Control of pore structure in carbon,” Carbon, vol. 38, no. 2, pp. 269–286, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors,” Journal of Power Sources, vol. 74, no. 1, pp. 99–107, 1998. View at Google Scholar · View at Scopus
  9. E. Frackowiak and F. Béguin, “Electrochemical storage of energy in carbon nanotubes and nanostructured carbons,” Carbon, vol. 40, no. 10, pp. 1775–1787, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nature Materials, vol. 7, no. 11, pp. 845–854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Dreisbach, R. Staudt, and J. U. Keller, “High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon,” Adsorption, vol. 5, no. 3, pp. 215–227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Sudibandriyo, Z. Pan, J. E. Fitzgerald, R. L. Robinson, and K. A. M. Gasem, “Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa,” Langmuir, vol. 19, no. 13, pp. 5323–5331, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. N. Smith, C. Pierce, and H. Cordes, “Adsorption of benzene and cyclohexane by graphite,” Journal of the American Chemical Society, vol. 72, no. 12, pp. 5595–5597, 1950. View at Google Scholar · View at Scopus
  14. G. Dosseh, Y. Xia, and C. Alba-Simionesco, “Cyclohexane and benzene confined in MCM-41 and SBA-15: confinement effects on freezing and melting,” Journal of Physical Chemistry B, vol. 107, no. 26, pp. 6445–6453, 2003. View at Google Scholar · View at Scopus
  15. S. Curbelo and E. A. Müller, “Modelling of ethane/ethylene separation using microporous carbon,” Adsorption Science and Technology, vol. 23, no. 10, pp. 855–865, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. F. J. A. L. Cruz and J. P. B. Mota, “Thermodynamics of adsorption of light alkanes and alkenes in single-walled carbon nanotube bundles,” Physical Review B, vol. 79, no. 16, Article ID 165426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. R. Rybolt, C. E. Wells, C. R. Sisson, C. B. Black, and K. A. Ziegler, “Evaluation of molecular mechanics calculated binding energies for isolated and monolayer organic molecules on graphite,” Journal of Colloid and Interface Science, vol. 314, no. 2, pp. 434–445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. U. Choi, D. K. Choi, Y. W. Lee, B. K. Lee, and S. H. Kim, “Adsorption equilibria of methane, ethane, ethylene, nitrogen, and hydrogen onto activated carbon,” Journal of Chemical and Engineering Data, vol. 48, no. 3, pp. 603–607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. L. R. Radovic and B. Bockrath, “On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials,” Journal of the American Chemical Society, vol. 127, no. 16, pp. 5917–5927, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Vernov and W. A. Steele, “The electrostatic field at a graphite surface and its effect on molecule-solid interactions,” Langmuir, vol. 8, no. 1, pp. 155–159, 1992. View at Google Scholar · View at Scopus
  21. A. Vernov and W. A. Steele, “Computer simulations of benzene adsorbed on graphite. 2. 298 k,” Langmuir, vol. 7, no. 11, pp. 2817–2820, 1991. View at Google Scholar · View at Scopus
  22. A. Vernov and W. A. Steele, “Computer simulations of benzene adsorbed on graphite. 1. 85 K,” Langmuir, vol. 7, no. 12, pp. 3110–3117, 1991. View at Google Scholar · View at Scopus
  23. D. D. Do and H. D. Do, “Adsorption of carbon tetrachloride on graphitized thermal carbon black and in slit graphitic pores: five-site versus one-site potential models,” Journal of Physical Chemistry B, vol. 110, no. 19, pp. 9520–9528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. D. D. Do and H. D. Do, “Adsorption of ethylene on graphitized thermal carbon black and in slit pores: a computer simulation study,” Langmuir, vol. 20, no. 17, pp. 7103–7116, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Saeys, M. F. Reyniers, M. Neurock, and G. B. Marin, “Adsorption of cyclohexadiene, cyclohexene and cyclohexane on Pt(1 1 1),” Surface Science, vol. 600, no. 16, pp. 3121–3134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Papp, R. Denecke, and H. P. Steinrück, “Adsorption and reaction of cyclohexene on a Ni(111) surface,” Langmuir, vol. 23, no. 10, pp. 5541–5547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. W. G. Xu, Z. F. Shang, and G. C. Wang, “Adsorption of cyclohexene on nAu/Pt(1 0 0) (n=0,1,2): a DFT study,” Journal of Molecular Structure: THEOCHEM, vol. 869, no. 1–3, pp. 47–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Faller, H. Schmitz, O. Biermann, and F. Müller-Plathe, “Automatic parameterization of force fields for liquids by simplex optimization,” Journal of Computational Chemistry, vol. 20, no. 10, pp. 1009–1017, 1999. View at Google Scholar · View at Scopus
  29. G. Cardini, “A comparison between the rigid and flexible model of cyclohexane in the plastic phase by molecular dynamic simulations,” Chemical Physics, vol. 193, no. 1-2, pp. 101–108, 1995. View at Google Scholar · View at Scopus
  30. I. G. Tironi, R. M. Brunne, and W. F. Van Gunsteren, “On the relative merits of flexible versus rigid models for use in computer simulations of molecular liquids,” Chemical Physics Letters, vol. 250, no. 1, pp. 19–24, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Schmitz, R. Faller, and F. Müller-Plathe, “Molecular mobility in cyclic hydrocarbons: a simulation study,” Journal of Physical Chemistry B, vol. 103, no. 44, pp. 9731–9737, 1999. View at Google Scholar · View at Scopus
  32. W. A. Steele, “The physical interaction of gases with crystalline solids. I: gas-solid energies and properties of isolated adsorbed atoms,” Surface Science, vol. 36, no. 1, pp. 317–352, 1973. View at Google Scholar · View at Scopus
  33. Y. F. Yin, B. McEnaney, and T. J. Mays, “Dependence of GCEMC simulations of nitrogen adsorption on activated carbons on input parameters,” Carbon, vol. 36, no. 10, pp. 1425–1432, 1998. View at Google Scholar · View at Scopus
  34. K. Kaneko, R. F. Cracknell, and D. Nicholson, “Nitrogen adsorption in slit pores at ambient temperatures: comparison of simulation and experiment,” Langmuir, vol. 10, no. 12, pp. 4606–4609, 1994. View at Google Scholar · View at Scopus
  35. X. Zhao and J. K. Johnson, “An effective potential for adsorption of polar molecules on graphite,” Molecular Simulation, vol. 31, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus