Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 127613, 8 pages
http://dx.doi.org/10.1155/2012/127613
Research Article

Introduction of Bifunctional Group onto MWNT by Radiation-Induced Graft Polymerization and Its Use as Biosensor-Supporting Materials

1Department of Chemistry, Hannam University, Daejeon 305-811, Republic of Korea
2Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-600, Republic of Korea

Received 26 January 2012; Revised 28 March 2012; Accepted 28 March 2012

Academic Editor: Sevan P. Davtyan

Copyright © 2012 Yu-Jin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A biosensor comprising tyrosinase immobilized on bifunctionalized multiwalled carbon nanotube (MWNT) supports was prepared for the detection of phenolic compounds in drinks such as red wine and juices. The MWNT supports were prepared by radiation-induced graft polymerization (RIGP) of epoxy-containing glycidyl methacrylate (GMA), to covalently immobilize the tyrosinase, and vinyl ferrocene (VF), which can act as an electron transfer mediator via redox reactions. The bifunctionalized MWNTs were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Electrodes prepared with the MWNTs showed increased current with increasing VF content. A biosensor comprising tyrosinase immobilized on the bifunctionalized MWNTs could detect phenol at 0.1–20 mM. Phenolics in red wine and juices were determined using the biosensor after its calibration.