Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 127613, 8 pages
http://dx.doi.org/10.1155/2012/127613
Research Article

Introduction of Bifunctional Group onto MWNT by Radiation-Induced Graft Polymerization and Its Use as Biosensor-Supporting Materials

1Department of Chemistry, Hannam University, Daejeon 305-811, Republic of Korea
2Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-600, Republic of Korea

Received 26 January 2012; Revised 28 March 2012; Accepted 28 March 2012

Academic Editor: Sevan P. Davtyan

Copyright © 2012 Yu-Jin Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Wang, “Carbon-nanotube based electrochemical biosensors: a review,” Electroanalysis, vol. 17, no. 1, pp. 7–14, 2005. View at Publisher · View at Google Scholar
  2. M. I. Prodromidis and M. I. Karayannis, “Enzyme based amperometric biosensors for food analysis,” Electroanalysis, vol. 14, no. 4, pp. 241–261, 2002. View at Google Scholar
  3. J. Wang, “Electrochemical glucose biosensors,” Chemical Reviews, vol. 108, no. 2, pp. 814–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. C. Tsai and C. C. Chiu, “Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds,” Sensors and Actuators B, vol. 125, no. 1, pp. 10–16, 2007. View at Publisher · View at Google Scholar
  5. Z. B. Zhang, S. J. Yuan, X. L. Zhu, K. G. Neoh, and E. T. Kang, “Enzyme-mediated amperometric biosensors prepared via successive surface-initiated atom-transfer radical polymerization,” Biosensors and Bioelectronics, vol. 25, no. 5, pp. 1102–1108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. E. G. Cass, G. Davis, G. D. Francis et al., “Ferrocene-mediated enzyme electrode for amperometric determination of glucose,” Analytical Chemistry, vol. 56, no. 4, pp. 667–671, 1984. View at Google Scholar · View at Scopus
  7. A. Escorcia and A. A. Dhirani, “Electrochemical properties of ferrocenylalkane dithiol-gold nanoparticle films prepared by layer-by-layer self-assembly,” Journal of Electroanalytical Chemistry, vol. 601, no. 1-2, pp. 260–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. F. Wang and D. Du, “Differential pulse voltammetry determination of ascorbic acid with ferrocene-l-cysteine self-assembled supramolecular film modified electrode,” Sensors and Actuators B, vol. 97, no. 2-3, pp. 373–378, 2004. View at Publisher · View at Google Scholar
  9. J. D. Qiu, W. M. Zhou, J. Guo, R. Wang, and R. P. Liang, “Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose,” Analytical Biochemistry, vol. 385, no. 2, pp. 264–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. Piao, D. S. Yang, K. R. Yoon, S. H. Lee, and S. H. Choi, “Development of an electrogenerated chemiluminescence biosensor using carboxylic acid-functionalized MWCNT and Au nanoparticles,” Sensors, vol. 9, no. 3, pp. 1662–1677, 2009. View at Publisher · View at Google Scholar
  11. K. I. Kim, H. Y. Kang, J. C. Lee, and S. H. Choi, “Fabrication of a multi-walled nanotube (MWNT) ionic liquid electrode and its application for sensing phenolics in red wines,” Sensors, vol. 9, no. 9, pp. 6701–6714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Yang, J. C. Lee, and S. H. Choi, “Tyrosinase-immobilized biosensor based on the functionalized hydroxyl group-MWNT and detection of phenolic compounds in red wines,” Journa of Sensors, vol. 2009, Article ID 916515, 9 pages, 2009. View at Publisher · View at Google Scholar
  13. K. I. Kim, J. C. Lee, K. Robards, and S. H. Choi, “Immobilization of tyrosinase in carboxylic and carbonyl group-modified MWNT electrode and its application for sensing phenolics in red wines,” Journal of Nanoscience and Nanotechnology, vol. 10, pp. 3790–3798, 2010. View at Google Scholar
  14. S. K. Kim, H. D. Kwen, and S. H. Choi, “Fabrication of a microbial biosensor based on QD-MWNT supports by a one-step radiation reaction and detection of phenolic compounds in red wines,” Sensors, vol. 11, no. 2, pp. 2001–2012, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. S. Yang, D. J. Jung, and S. H. Choi, “One-step functionalization of multi-walled carbon nanotubes by radiation-induced graft polymerization and their application as enzyme-free biosensors,” Radiation Physics and Chemistry, vol. 79, no. 4, pp. 434–440, 2010. View at Publisher · View at Google Scholar
  16. S. H. Choi, K. P. Lee, and J. G. Lee, “Adsorption behavior of urokinase by polypropylene film modified with amino acids as affinity groups,” Microchemical Journal, vol. 68, no. 2-3, pp. 205–213, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. S. H. Choi, G. T. Kim, and Y. C. Nho, “Adsorption of Co2+ and Cs1+ by polyethylene membrane with iminodiacetic acid and sulfonic acid modified by radiation-induced graft copolymerization,” Journal of Applied Polymer Science, vol. 71, no. 6, pp. 999–1006, 1999. View at Google Scholar
  18. G. S. Park, J. H. Chang, H. J. Kim, S. H. Choi, and Y. C. Nho, “Preparation of Polypropylene Fabric Containing Phosphoric Acid Groups by Radiation-Induced Graft Copolymerization, and Its Adsorption to Pb2+, Cu2+ and Co2+,” Journal of Analytical Science & Technology, vol. 7, p. 7, 1999. View at Google Scholar
  19. S. H. Choi, Y. M. Hwang, J. J. Ryoo et al., “Surface grafting of glycidyl methacrylate on silica gel and polyethylene beads,” Electrophoresis, vol. 24, no. 18, pp. 3181–3186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Choi, K. P. Lee, and H. D. Kang, “Immobilization of lipase on a polymeric microsphere with an epoxy group prepared by radiation-induced polymerization,” Journal of Applied Polymer Science, vol. 88, no. 5, pp. 1153–1161, 2003. View at Publisher · View at Google Scholar
  21. L. Liu, F. Zhang, F. Xi, and X. Lin, “Highly sensitive biosensor based on bionanomultilayer with water-soluble multiwall carbon nanotubes for determination of phenolics,” Biosensors and Bioelectronics, vol. 24, no. 2, pp. 306–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Tan, W. Deng, B. Ge, Q. Xie, J. Huang, and S. Yao, “Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film,” Biosensors and Bioelectronics, vol. 24, no. 7, pp. 2225–2231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Chawla, R. Rawal, and C. S. Pundir, “Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode,” Journal of Biotechnology, vol. 156, no. 1, pp. 39–45, 2011. View at Google Scholar
  24. C. Védrine, S. Fabiano, and C. Tran-Minh, “Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support,” Talanta, vol. 59, no. 3, pp. 535–544, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Carralero, M. L. Mena, A. Gonzalez-Corties, P. Yanez-Sedeno, and J. M. Pingarron, “Development of a high analytical performance-tyrosinase biosensor based on a composite graphite-Teflon electrode modified with gold nanoparticles,” Biosensors and Bioelectronics, vol. 22, no. 5, pp. 730–736, 2006. View at Google Scholar
  26. S. Campuzano, B. Serra, M. Pedrero, F. J. Manuel de Villena, and J. M. Pingarron, “Amperometric flow injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors,” Analytica Chimica Acta, vol. 494, pp. 187–197, 2003. View at Google Scholar
  27. J. Kemmegne Mbouguen, E. Ngameni, and A. Walcarius, “Organoclay-enzyme film electrodes,” Analytica Chimica Acta, vol. 578, no. 2, pp. 145–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Q. Wang and S. J. Dong, “Organic-phase enzyme electrode for phenolic determination based on a functionalized sol-gel composite,” Journal of Electroanalytical Chemistry, vol. 487, no. 1, pp. 45–50, 2000. View at Publisher · View at Google Scholar
  29. L. Y. Chen, B. X. Gu, G. P. Zhu, Y. F. Wu, S. Q. Liu, and C. X. Xu, “Electrocatalytic behavior of tyrosinase on ZnO nanorod,” Journal of Electroanalytical Chemistry, vol. 617, pp. 7–13, 2008. View at Google Scholar