Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 145406, 5 pages
Research Article

SnO2 Nanoparticle-Based Passive Capacitive Sensor for Ethylene Detection

1Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), 723 W. Michigan Street, Indianapolis, IN 46202, USA
2Foxconn International Holdings (FIH), 1551 Sawgrass Corporate Parkway, Sunrise, FL 33323, USA

Received 24 March 2012; Accepted 1 June 2012

Academic Editor: Grégory Guisbiers

Copyright © 2012 Mangilal Agarwal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. A. Kader, “Increasing food availability by reducing postharvest losses of fresh produce,” in Proceedings of the 5th International Postharvest Symposium, Acta Horticulturae, pp. 2169–2176, 2005.
  2. D. M. Tieman and A. K. Handa, “Immunocytolocalization of polygalacturonase in ripening tomato fruit,” Plant Physiology, vol. 90, pp. 17–20, 1989. View at Google Scholar
  3. S. M. Cristescu, D. De Martinis, S. Te Lintel Hekkert, D. H. Parker, and F. J. M. Harren, “Ethylene production by Botrytis cinerea in vitro and in tomatoes,” Applied and Environmental Microbiology, vol. 68, no. 11, pp. 5342–5350, 2002. View at Google Scholar · View at Scopus
  4. P. Ivanov, E. Llobet, A. Vergara et al., “Towards a micro-system for monitoring ethylene in warehouses,” Sensors and Actuators B, vol. 111-112, pp. 63–70, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. H. Kwon, H. Hong, S. T. Kim et al., “Vegetable freshness keeping device having a sensor,” US Patent, 5 609 096, 1997.
  6. A. Giberti, M. C. Carotta, V. Guidi, C. Malag?, M. Piga, and G. Martinelli, “Monitoring of ethylene for agro-alimentary applications and compensation of humidity effects,” in Proceedings of the Eurosensor XVII, September 2003.
  7. S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, “Current/voltage characteristics of a semiconductor metal oxide gas sensor,” Sensors and Actuators B, vol. 93, no. 1–3, pp. 454–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Pietrucha and B. Lalevic, “Detection of hydrocarbon gases using PdMNOS capacitors,” Sensors and Actuators, vol. 13, no. 3, pp. 275–286, 1988. View at Google Scholar · View at Scopus
  9. F. Winquist and I. Lundström, “Thin metal film-oxide-semiconductor structures with temperature-dependent sensitivity for unsaturated hydrocarbons,” Sensors and Actuators, vol. 12, no. 3, pp. 255–261, 1987. View at Google Scholar · View at Scopus
  10. R. Zhang, M. I. Tejedor, M. A. Anderson, M. Paulose, and C. A. Grimes, “Ethylene detection using nanoporous PtTiO2 coatings applied to magnetoelastic thick films,” Sensors, vol. 2, no. 8, pp. 331–338, 2002. View at Google Scholar · View at Scopus
  11. B. S. Kang, S. Kim, F. Ren et al., “Detection of C2H4 using wide-bandgap semiconductor sensors: AlGaN/GaN MOS diodes and bulk ZnO schottky rectifiers,” Journal of the Electrochemical Society, vol. 151, no. 7, pp. G468–G471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Ihokura, “Tin oxide gas sensor for deoxidizing gases,” New Materials and New Processes in Electrochemical Technology, vol. 1, pp. 43–50, 1981. View at Google Scholar
  13. R. Srivastava, R. Dwivedi, and S. K. Srivastava, “Effect of oxygen, nitrogen and hydrogen plasma processing on palladium doped tin oxide thick film gas sensors,” in The International Society for Optical Engineering, vol. 3316 of Proceedings of SPIE, pp. 526–528, 1998.
  14. L. R. Jordan, P. C. Hauser, and G. A. Dawson, “Humidity and temperature effects on the response to ethylene of an amperometric sensor utilizing a gold-nafion electrode,” Electroanalysis, vol. 9, no. 15, pp. 1159–1162, 1997. View at Google Scholar · View at Scopus
  15. D. Weidmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, “Monitoring of ethylene by a pulsed quantum cascade laser,” Applied Optics, vol. 43, no. 16, pp. 3329–3334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. E. D. Butrym and T. G. Hartman, “Determination of ethylene by adsorbent trapping and thermal desorption-gas chromatography,” in Proceedings of the (Pittcon '98), March 1998.
  17. J. N. Burstyn, A. B. Ellis, O. Green, and N. A. Smith, “Photoluminescent ethylene sensors,” US Patent 20 050 031 985, 2005.
  18. B. N. Nelson, R. V. Richard, and J. A. Kanc, “Ethylene monitoring and control system,” US Patent 6 105 416, 2000.
  19. R. C. Ghan, Y. Lvov, and R. S. Besser, “Characterization of self-assembled SnO2 nanoparticles for fabrication of a high sensitivity and high selectivity micro-gas sensor,” in Proceedings of the Materials Research Society Symposium, vol. 703, pp. 297–302, April 2002. View at Scopus
  20. G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sensors and Actuators B, vol. 107, no. 1, pp. 209–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. R. L. Van der Wal, G. M. Berger, G. W. Hunter, J. C. Xu, L. J. Evans, and C. C. Liu, “A comparison between SnO2 nanowires and nanofibers for advanced environmental sensing,” in Proceedings of the Annual Meeting and Fall Showcase (AIChE '05), p. 11922, November 2005. View at Scopus
  22. B. B. Straumal, S. G. Protasova, A. A. Mazilkin et al., “Ferromagnetic properties of the Mn-doped nanograined ZnO films,” Journal of Applied Physics, vol. 108, no. 7, Article ID 073923, 6 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. D. Balachandran, S. Shrestha, M. Agarwal, Y. Lvov, and K. Varahramyan, “SnO2 capacitive sensor integrated with microstrip patch antenna for passive wireless detection of ethylene gas,” Electronics Letters, vol. 44, no. 7, pp. 464–466, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Molero, D. Stacchiola, and W. T. Tysoe, “The kinetics of ethylene hydrogenation catalyzed by metallic palladium,” Catalysis Letters, vol. 101, no. 3-4, pp. 145–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. J. O. Dennis, M. M. .A. Karim, Z. Ibrahim, and M. K. Saidin, “Hysteresis behavior of sensitivity in CH4 detection in air using SnO2 with Pd as sensitizing additive,” Jurnal Teknologi C, vol. 36, pp. 55–60, 2002. View at Google Scholar
  26. G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, and J. Morante, “Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis,” Thin Solid Films, vol. 436, no. 1, pp. 119–126, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Thomas and M. Skaria, “Air quality parameters in ethylene degreening rooms in the valley influence citrus fruit decay,” Tech. Rep., Department of Agriculture, Texas A & M University, College Station, Tex, USA.