Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 219073, 11 pages
http://dx.doi.org/10.1155/2012/219073
Research Article

Electrical and Thermal Behavior of Copper-Epoxy Nanocomposites Prepared via Aqueous to Organic Phase Transfer Technique

1Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
2Intel Technology (M) Sdn Bhd, Bayan Lepas FTZ, Phase III, 11900 Penang, Malaysia
3BCI Chemical Corporation Sdn Bhd, Lot 7, Jalan BS 7/22, Taman Perindustrian Bukit Serdang, Seksyen 7, 43300 Sri Kembangan, Malaysia

Received 31 October 2011; Accepted 19 December 2011

Academic Editor: Sevan P. Davtyan

Copyright © 2012 N. H. Mohd Hirmizi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Sánchez-Soto, P. Pagés, T. Lacorte, K. Briceño, and F. Carrasco, “Curing FTIR study and mechanical characterization of glass bead filled trifunctional epoxy composites,” Composites Science and Technology, vol. 67, no. 9, pp. 1974–1985, 2007. View at Publisher · View at Google Scholar
  2. H. Chen, O. Jacobs, W. Wu, G. Rüdiger, and B. Schädel, “Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites,” Polymer Testing, vol. 26, no. 3, pp. 351–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. P. Wu, X. J. Wu, M. Y. Ge, G. Q. Zhang, Y. W. Wang, and J. Z. Jiang, “Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives,” Composites Science and Technology, vol. 67, no. 6, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Jiang, K. S. Moon, J. Lu, and C. P. Wong, “Conductivity enhancement of nano silver-filled conductive adhesives by particle surface functionalization,” Journal of Electronic Materials, vol. 34, no. 11, pp. 1432–1439, 2005. View at Google Scholar · View at Scopus
  5. F. Tan, X. Qiao, J. Chen, and H. Wang, “Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives,” International Journal of Adhesion and Adhesives, vol. 26, no. 6, pp. 406–413, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. H. P. Wu, J. F. Liu, X. J. Wu et al., “High conductivity of isotropic conductive adhesives filled with silver nanowires,” International Journal of Adhesion and Adhesives, vol. 26, no. 8, pp. 617–621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Pardiñas-Blanco, C. E. Hoppe, M. A. López-Quintela, and J. Rivas, “Control on the dispersion of gold nanoparticles in an epoxy network,” Journal of Non-Crystalline Solids, vol. 353, no. 8–10, pp. 826–828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. F. Goh, H. Yu, S. S. Yong, S. G. Mhaisalkar, F. Y. C. Boey, and P. S. Teo, “Synthesis and cure kinetics of isotropic conductive adhesives comprising sub-micrometer sized nickel particles,” Materials Science and Engineering B, vol. 117, no. 2, pp. 153–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Kahraman, M. Sunar, and B. Yilbas, “Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive,” Journal of Materials Processing Technology, vol. 205, no. 1–3, pp. 183–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. L. Chan, M. Mariatti, Z. Lockman, and L. C. Sim, “Effect of ultrasonication medium on the properties of copper nanoparticle-filled epoxy composite for electrical conductive adhesive (ECA) application,” Journal of Materials Science, vol. 21, no. 8, pp. 772–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Zhang, X. Cheng, H. Yin, J. Yuan, and C. Xu, “Preparation of needle shaped nano-copper by microwave-assisted water system and study on its application of enhanced epoxy resin coating electrical conductivity,” Applied Surface Science, vol. 254, no. 18, pp. 5757–5759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. I. Tee, M. Mariatti, A. Azizan, C. H. See, and K. F. Chong, “Effect of silane-based coupling agent on the properties of silver nanoparticles filled epoxy composites,” Composites Science and Technology, vol. 67, no. 11-12, pp. 2584–2591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Gonon and A. Boudefel, “Electrical properties of epoxy/silver nanocomposites,” Journal of Applied Physics, vol. 99, no. 2, Article ID 024308, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yagci, M. Sangermano, and G. Rizza, “Synthesis and characterization of gold-epoxy nanocomposites by visible light photoinduced electron transfer and cationic polymerization processes,” Macromolecules, vol. 41, no. 20, pp. 7268–7270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Sastry, “Phase transfer protocols in nanoparticle synthesis,” Current Science, vol. 85, no. 12, pp. 1735–1745, 2003. View at Google Scholar · View at Scopus
  16. M. Sastry, A. Kumar, and P. Mukherjee, “Phase transfer of aqueous colloidal gold particles into organic solutions containing fatty amine molecules,” Colloids and Surfaces A, vol. 181, no. 1–3, pp. 255–259, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Bala, A. Swami, B. L. V. Prasad, and M. Sastry, “Phase transfer of oleic acid capped NicoreAgshell nanoparticles assisted by the flexibility of oleic acid on the surface of silver,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 422–431, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. G. Li, S. H. Chen, S. Y. Zhao, X. M. Hou, H. Y. Ma, and X. G. Yang, “A study of phase transfer processes of Ag nanoparticles,” Applied Surface Science, vol. 200, no. 1–4, pp. 62–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. L. M. Liz-Marzán and A. P. Philipse, “Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers,” Journal of Physical Chemistry, vol. 99, no. 41, pp. 15120–15128, 1995. View at Google Scholar · View at Scopus
  20. Z. M. Sui, X. Chen, L. Y. Wang et al., “Capping effect of CTAB on positively charged Ag nanoparticles,” Physica E, vol. 33, no. 2, pp. 308–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Nikoobakht and M. A. El-Sayed, “Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods,” Langmuir, vol. 17, no. 20, pp. 6368–6374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Yang, J. Y. Lee, and H. P. Too, “A general phase transfer protocol for synthesizing alkylamine-stabilized nanoparticles of noble metals,” Analytica Chimica Acta, vol. 588, no. 1, pp. 34–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. A. Athawale, P. P. Katre, M. Kumar, and M. B. Majumdar, “Synthesis of CTAB-IPA reduced copper nanoparticles,” Materials Chemistry and Physics, vol. 91, no. 2-3, pp. 507–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhang, S. Wang, X. Li, L. Chen, Y. Qian, and Z. Zhang, “CuO shuttle-like nanocrystals synthesized by oriented attachment,” Journal of Crystal Growth, vol. 291, no. 1, pp. 196–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Gao, J. Dong, H. Zhang, X. Zhou, G. Zhang, and J. Eastoe, “Application of a multi-dentate amphiphilic compound to transfer silver nanoparticles into an organic solvent,” Journal of Colloid and Interface Science, vol. 304, no. 2, pp. 388–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir, vol. 10, no. 10, pp. 3427–3430, 1994. View at Google Scholar · View at Scopus
  27. N. R. Jana, Z. L. Wang, T. K. Sau, and T. Pal, “Seed-mediated growth method to prepare cubic copper nanoparticles,” Current Science, vol. 79, no. 9, pp. 1367–1370, 2000. View at Google Scholar · View at Scopus
  28. S. Panigrahi, S. Kundu, S. K. Ghosh et al., “Selective one-pot synthesis of copper nanorods under surfactantless condition,” Polyhedron, vol. 25, no. 5, pp. 1263–1269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. C. M. Sales, M. F. Diniz, R. C. L. Dutra, G. P. Thim, and D. Dibbern-Brunelli, “Study of curing process of glass fiber and epoxy resin composite by FT-NIR, photoacoustic spectroscopy and luminescence spectroscopy,” Journal of Materials Science, vol. 46, no. 6, pp. 1814–1823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Y. Lee, M. J. Shim, and S. W. Kim, “Effect of modified rubber compound on the cure kinetics of DGEBA/MDA system by Kissinger and isoconversional methods,” Thermochimica Acta, vol. 371, no. 1-2, pp. 45–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Tao, S. Yang, J. C. Grunlan et al., “Effects of carbon nanotube fillers on the curing processes of epoxy resin-based composites,” Journal of Applied Polymer Science, vol. 102, no. 6, pp. 5248–5254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. R. Loos, L. A. F. Coelho, S. H. Pezzin, and S. C. Amico, “Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices,” Materials Research, vol. 11, no. 3, pp. 347–352, 2008. View at Google Scholar · View at Scopus
  33. M. Aufray and A. André Roche, “Epoxy-amine/metal interphases: influences from sharp needle-like crystal formation,” International Journal of Adhesion and Adhesives, vol. 27, no. 5, pp. 387–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Aufray and A. A. Roche, “Properties of the interphase epoxy-amine/metal: influences from the nature of the amine and the metal,” in Adhesion-Current Research and Applications, pp. 89–102, Wiley-VCH, New York, NY, USA, 2005. View at Google Scholar
  35. C. A. Gracia-Fernández, S. Gómez-Barreiro, S. Ruíz-Salvador, and R. Blaine, “Study of the degradation of a thermoset system using TGA and modulated TGA,” Progress in Organic Coatings, vol. 54, no. 4, pp. 332–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Y. Yeo, W. L. Tan, M. Abu Bakar, and J. Ismail, “Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: thermal stability and kinetic analysis of thermal degradation,” Polymer Degradation and Stability, vol. 95, no. 8, pp. 1299–1304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. M. Gorghiu, S. Jipa, T. Zaharescu, R. Setnescu, and I. Mihalcea, “The effect of metals on thermal degradation of polyethylenes,” Polymer Degradation and Stability, vol. 84, no. 1, pp. 7–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Jie, L. Yuwen, S. Jingyan et al., “The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR,” Thermochimica Acta, vol. 467, no. 1-2, pp. 20–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Pielichowski and K. Flejtuch, “Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study,” Journal of Analytical and Applied Pyrolysis, vol. 73, no. 1, pp. 131–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Rosu, L. Rosu, and M. Brebu, “Thermal stability of silver sulfathiazole-epoxy resin network,” Journal of Analytical and Applied Pyrolysis, vol. 92, no. 1, pp. 10–18, 2011. View at Publisher · View at Google Scholar
  41. L. H. Lee, “Mechanisms of thermal degradation of phenolic condensation polymers. II. Thermal stability and degradation schemes of epoxy resins,” Journal of Polymer Science Part A, vol. 3, no. 3, pp. 859–882, 1965. View at Google Scholar
  42. F. N. Ahmad, M. Jaafar, S. Palaniandy, and K. A. M. Azizli, “Effect of particle shape of silica mineral on the properties of epoxy composites,” Composites Science and Technology, vol. 68, no. 2, pp. 346–353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Rong, M. Zhang, H. Liu, and H. Zeng, “Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin,” Polymer, vol. 40, no. 22, pp. 6169–6178, 1999. View at Google Scholar · View at Scopus
  44. E. S. A. Rashid, K. Ariffin, C. C. Kooi, and H. M. Akil, “Preparation and properties of POSS/epoxy composites for electronic packaging applications,” Materials and Design, vol. 30, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Yuan, C. Li, G. Guan, Y. Xiao, and D. Zhang, “Thermal degradation investigation of poly(ethylene terephthalate)/fibrous silicate nanocomposites,” Polymer Degradation and Stability, vol. 93, no. 2, pp. 466–475, 2008. View at Publisher · View at Google Scholar · View at Scopus