Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 341073, 7 pages
http://dx.doi.org/10.1155/2012/341073
Research Article

FMR Study of the Porous Silicate Glasses with Fe3O4 Magnetic Nanoparticles Fillers

1Institute of Physics, University of Zielona Góra, ul. Szafrana 4a, 65-069 Zielona Góra, Poland
2Department of Solid State Physics, University of Athens, Panepistimiopolis, 15 784 Athens, Greece
3Institute of Physics, West Pomeranian University of Technology, Al. Piastow 17, 70-310 Szczecin, Poland
4Faculty of Biological Sciences, University of Zielona Góra, ul. Szafrana 1, 65-516 Zielona Góra, Poland
5Sector of Spectroscopy, Institute of Physical Optics, Dragomanov Street 23, 79-005 Lviv, Ukraine
6Institute of Physics, Wroclaw University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland

Received 16 March 2012; Revised 7 June 2012; Accepted 26 June 2012

Academic Editor: Makis Angelakeris

Copyright © 2012 B. Zapotoczny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Tartaj, M. Del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreño, and C. J. Serna, “The preparation of magnetic nanoparticles for applications in biomedicine,” Journal of Physics D, vol. 36, no. 13, pp. R182–R197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Liu, Z. Chen, and J. Wang, “Systematic evaluation of biocompatibility of magnetic FeX3O4 nanoparticles with six different mammalian cell lines,” Journal of Nanoparticle Research, vol. 13, p. 199, 2011. View at Publisher · View at Google Scholar
  3. J. H. Van Vleck, “Concerning the theory of ferromagnetic resonance absorption,” Physical Review, vol. 78, no. 3, pp. 266–274, 1950. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Guskos, V. Likodimos, S. Glenis et al., “Magnetic properties of γ-Fe2O3/Poly(Ether-Ester) nanocomposites,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 4, pp. 2127–2134, 2008. View at Google Scholar
  5. M. R. Dudek, N. Guskos, E. Senderek, and Z. Roslaniec, “Temperature dependence of the FMR absorption lines in viscoelastic magnetic materials,” Journal of Alloys and Compounds, vol. 504, no. 2, pp. 289–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Gao and B. Xu, “Applications of nanomaterials inside cells,” Nano Today, vol. 4, no. 1, pp. 37–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Y. Liu, S. H. Hu, D. M. Liu, S. Y. Chen, and I. W. Chen, “Biomedical nanoparticle carriers with combined thermal and magnetic responses,” Nano Today, vol. 4, no. 1, pp. 52–65, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Vallet-Regí and F. Balas, “Silica materials for medical applications,” Open Biomedical Engineering Journal, vol. 2, p. 1, 2008. View at Publisher · View at Google Scholar
  9. S. Li, L. Nguyen, H. Xiong et al., “Nanocariers for biomedical applications,” Journal of the South Carolina Academy of Science, vol. 9, no. 1, p. 30, 2011. View at Google Scholar
  10. E. Rysiakiewicz-Pasek, P. Łukaszewski, and J. Bogdańska, “Influence of water adsorption on mechanical properties of porous glasses,” Optica Applicata, vol. 30, no. 1, pp. 173–176, 2000. View at Google Scholar · View at Scopus
  11. R. Massart, “Preparation of aqueous magnetic liquids in alkaline and acidic media,” IEEE Transactions on Magnetics, vol. 17, no. 2, pp. 1247–1248, 1981. View at Google Scholar · View at Scopus
  12. M. Kosmulski, “pH-dependent surface charging and points of zero charge: III. Update,” Journal of Colloid and Interface Science, vol. 298, no. 2, pp. 730–741, 2006. View at Publisher · View at Google Scholar
  13. I. Kazeminezhad and S. Mosivand, “Size dependence of electrooxidized Fe3O4 nanoparticles on surfactant concentration,” Proceedings of World Academy of Science, Engineering and Technology, vol. 74, pp. 338–341, 2011. View at Google Scholar · View at Scopus
  14. M. Barale, C. Mansour, F. Carrette et al., “Characterization of the surface charge of oxide particles of PWR primary water circuits from 5 to 320 °C,” Journal of Nuclear Materials, vol. 381, no. 3, pp. 302–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Tombacz, A. Majzik, Z. S. Horvat, and E. Illes, “Magnetite in aqueous medium: coating its surface and surface coated with it,” Romanian Reports in Physics, vol. 58, no. 3, pp. 281–286, 2006. View at Google Scholar
  16. D. P. J. Barz, M. J. Vogel, and P. H. Steen, “Determination of the zeta potential of porous substrates by droplet deflection. I. The influence of ionic strength and pH value of an aqueous electrolyte in contact with a borosilicate surface,” Langmuir, vol. 25, no. 3, pp. 1842–1850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. E. J. Mathes and W. Friess, “Influence of pH and ionic strength on IgG adsorption to vials,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 78, no. 2, pp. 239–247, 2011. View at Publisher · View at Google Scholar
  18. S. Jung, B. Watkins, L. De Long, J. B. Ketterson, and V. Chandrasekhar, “Ferromagnetic resonance in periodic particle arrays,” Physical Review B, vol. 66, no. 13, Article ID 132401, 2002. View at Google Scholar
  19. S. Jung, J. B. Ketterson, and V. Chandrasekhar, “Micromagnetic calculations of ferromagnetic resonance in submicron ferromagnetic particles,” Physical Review B, vol. 66, no. 13, Article ID 132405, 2002. View at Google Scholar
  20. N. Guskos, S. Glenis, V. Likodimos et al., “Matrix effects on the magnetic properties of γ- Fe2O3 nanoparticles dispersed in a multiblock copolymer,” Journal of Applied Physics, vol. 99, no. 8, Article ID 084307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Sukhov, K. D. Usadel, and U. Nowak, “Ferromagnetic resonance in an ensemble of nanoparticles with randomly distributed anisotropy axes,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 1-2, pp. 31–35, 2008. View at Publisher · View at Google Scholar
  22. L. Landau and E. Lifshitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,” Physik Z. Sowjetunion, vol. 8153, 1935. View at Google Scholar
  23. T. L. Gilbert, “A Lagrangian formulation of the gyromagnetic equation of the magnetic field,” Physical Review, vol. 100, p. 1243, 1955. View at Google Scholar