Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 415370, 5 pages
http://dx.doi.org/10.1155/2012/415370
Research Article

Enhancement of Electron Transfer Efficiency in Solar Cells Based on PbS QD/N719 Dye Cosensitizers

Beijing Key Laboratory for Sensor, Ministry-of-Education Key Laboratory for Modern Measurement and Control Technology and School of Applied Sciences, Beijing Information Science and Technology University, Jianxiangqiao Campus, Beijing 100101, China

Received 20 June 2012; Accepted 26 June 2012

Academic Editor: Jiaguo Yu

Copyright © 2012 Yanyan Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Joanni, R. Savu, M. de Sousa Góes et al., “Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide,” Scripta Materialia, vol. 57, no. 3, pp. 277–280, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. W.-T. Sun, A. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen, and L.-M. Peng, “CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes,” Journal of the American Chemical Society, vol. 130, no. 4, pp. 1124–1125, 2008. View at Publisher · View at Google Scholar
  4. Y.-L. Lee and C.-H. Chang, “Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells,” Journal of Power Sources, vol. 185, no. 1, pp. 584–588, 2008. View at Publisher · View at Google Scholar
  5. C.-H. Chang and Y.-L. Lee, “Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells,” Applied Physics Letters, vol. 91, no. 5, Article ID 053503, 2007. View at Publisher · View at Google Scholar
  6. W. Lee, S. K. Min, V. Dhas, S. B. Ogale, and S.-H. Han, “Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells,” Electrochemistry Communications, vol. 11, no. 1, pp. 103–106, 2009. View at Publisher · View at Google Scholar
  7. Y.-L. Lee and Y.-S. Lo, “Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe,” Advanced Functional Materials, vol. 19, no. 4, pp. 604–609, 2009. View at Publisher · View at Google Scholar
  8. S.-Q. Fan, D. Kim, J.-J. Kim, D. W. Jung, S. O. Kang, and J. Ko, “Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications,” Electrochemistry Communications, vol. 11, no. 6, pp. 1337–1339, 2009. View at Publisher · View at Google Scholar
  9. J. Chen, D. W. Zhao, J. L. Song et al., “Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells,” Electrochemistry Communications, vol. 11, no. 12, pp. 2265–2267, 2009. View at Publisher · View at Google Scholar
  10. Q. Shen, T. Sato, and M. Hashimoto, “Photoacoustic and photo electrochemical characterization of CdSe-sensitized TiO2 electrodes composed of nanotubes and nanowires,” Thin Solid Films, vol. 499, pp. 299–305, 2006. View at Google Scholar
  11. W. Lee, J. Lee, S. K. Min, T. Park, W. Yi, and S.-H. Han, “Effect of single-walled carbon nanotube in PbS/TiO2 quantum dots-sensitized solar cells,” Materials Science and Engineering B, vol. 156, no. 1–3, pp. 48–51, 2009. View at Publisher · View at Google Scholar
  12. R. Plass, S. Pelet, J. Krueger, M. Grätzel, and U. Bach, “Quantum dot sensitization of organic-inorganic hybrid solar cells,” Journal of Physical Chemistry B, vol. 106, no. 31, pp. 7578–7580, 2002. View at Publisher · View at Google Scholar
  13. P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots,” Applied Physics Letters, vol. 66, pp. 349–351, 1995. View at Google Scholar
  14. D. H. Kim, Y. H. Lee, D. U. Lee, T. W. Kim, S. Kim, and S. W. Kim, “Significant enhancement of the power conversion efficiency for organic photovoltaic cells due to a P3HT pillar layer containing ZnSe quantum dots,” Optics Express, vol. 20, no. 10, pp. 10476–10483, 2012. View at Publisher · View at Google Scholar
  15. Y. L. Lee, B. M. Huang, and H. T. Chien, “Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications,” Chemistry of Materials, vol. 20, no. 22, pp. 6903–6905, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” Journal of Physical Chemistry, vol. 95, no. 2, pp. 525–532, 1991. View at Google Scholar
  17. P. K. Santra and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%,” Journal of the American Chemical Society, vol. 134, no. 5, pp. 2508–2511, 2012. View at Publisher · View at Google Scholar
  18. W. Lee, W. C. Kwak, S. K. Min et al., “Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals,” Electrochemistry Communications, vol. 10, no. 11, pp. 1699–1702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. J. Ellingson, M. C. Beard, J. C. Johnson et al., “Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots,” Nano Letters, vol. 5, no. 5, pp. 865–871, 2005. View at Publisher · View at Google Scholar
  20. A. J. Nozik, “Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion,” Inorganic Chemistry, vol. 44, no. 20, pp. 6893–6899, 2005. View at Publisher · View at Google Scholar