Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 478153, 10 pages
http://dx.doi.org/10.1155/2012/478153
Research Article

Polycation-Capped CdS Quantum Dots Synthesized in Reverse Microemulsions

Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, Haus 25 Golm, 14476 Potsdam, Germany

Received 21 February 2012; Accepted 21 June 2012

Academic Editor: Grégory Guisbiers

Copyright © 2012 Karina Lemke and Joachim Koetz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Han, D. Qin, X. Jiang et al., “Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells,” Nanotechnology, vol. 17, no. 18, pp. 4736–4742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells,” Science, vol. 295, no. 5564, pp. 2425–2427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Wei, D. Grouquist, and J. Roark, “Voltage tunable electroluminescence of CdTe nanoparticle light emitting diodes,” Journal of Nanoscience and Nanotechnology, vol. 2, no. 1, pp. 47–53, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Matsui, “Nanoparticles for electronic device applications: a brief review,” Journal of Chemical Engineering of Japan, vol. 38, no. 8, pp. 535–546, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology applications in cancer,” Annual Review of Biomedical Engineering, vol. 9, pp. 257–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. N. Rhyner, A. M. Smith, X. Gao, H. Mao, L. Yang, and S. Nie, “Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging,” Nanomedicine, vol. 1, no. 2, pp. 209–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Santra, J. Xu, K. Wang, and W. Tan, “Luminescent nanoparticle probes for bioimaging,” Journal of Nanoscience and Nanotechnology, vol. 4, no. 6, pp. 590–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Serpone and R. Khairutdinov, “Application of nanoparticles in the photocatalytic degradation of water pollutants,” Studies in Surface Science and Catalysis, vol. 103, pp. 417–444, 1997. View at Google Scholar
  9. J. J. Zou, C. Chen, C. J. Liu, Y. P. Zhang, Y. Han, and L. Cui, “Pt nanoparticles on TiO2 with novel metal-semiconductor interface as highly efficient photocatalyst,” Materials Letters, vol. 59, no. 27, pp. 3437–3440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Zhang, Y. Zhong, J. Fan et al., “Preparation, morphology, size quantization effect and photocatalytic properties of CdS Q-nanocrystals,” Science China Chemistry B, vol. 46, no. 2, pp. 196–206, 2003. View at Google Scholar
  11. L. E. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites,” The Journal of Chemical Physics, vol. 79, no. 11, pp. 5566–5572, 1983. View at Google Scholar · View at Scopus
  12. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” The Journal of Chemical Physics, vol. 80, no. 9, pp. 4403–4409, 1984. View at Google Scholar · View at Scopus
  13. A. Henglein, “Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles,” Chemical Reviews, vol. 89, no. 8, pp. 1861–1873, 1989. View at Google Scholar · View at Scopus
  14. H. Weller, “Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules,” Angewandte Chemie, vol. 32, no. 1, pp. 41–53, 1993. View at Google Scholar · View at Scopus
  15. E. Lifshitz, I. Dag, I. Litvin et al., “Optical properties of CdSe nanoparticle films prepared by chemical deposition and sol-gel methods,” Chemical Physics Letters, vol. 288, no. 2–4, pp. 188–196, 1998. View at Google Scholar · View at Scopus
  16. B. Bhattacharjee, D. Ganguli, S. Chaudhuri, and A. K. Pal, “Synthesis and optical characterization of sol-gel derived zinc sulphide nanoparticles confined in amorphous silica thin films,” Materials Chemistry and Physics, vol. 78, no. 2, pp. 372–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Li, F. Huang, Q. Zhang, and Z. Gu, “Solvothermal synthesis of nanocrystalline cadmium sulfide,” Journal of Materials Science, vol. 35, no. 23, pp. 5933–5937, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Lu, F. Gao, and D. Zhao, “The assembly of semiconductor sulfide nanocrystallites with organic reagents as templates,” Nanotechnology, vol. 13, no. 6, pp. 741–745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Yin, X. Xu, X. Ge, Y. Lu, and Z. Zhang, “Synthesis and characterization of ZnS colloidal particles via γ-radiation,” Radiation Physics and Chemistry, vol. 55, no. 3, pp. 353–356, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Shao, Q. Li, B. Xie, J. Wu, and Y. Qian, “The synthesis of CdS/ZnO and CdS/Pb3O4 composite materials via microwave irradiation,” Materials Chemistry and Physics, vol. 78, no. 1, pp. 288–291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. I. W. Hamley, “Nanostructure fabrication using block copolymers,” Nanotechnology, vol. 14, no. 10, pp. R39–R54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Moffitt, H. Vali, and A. Eisenberg, “Spherical assemblies of semiconductor nanoparticles in water-soluble block copolymer aggregates,” Chemistry of Materials, vol. 10, no. 4, pp. 1021–1028, 1998. View at Google Scholar · View at Scopus
  23. J. Zhang, S. Xu, and E. Kumacheva, “Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles,” Journal of the American Chemical Society, vol. 126, no. 25, pp. 7908–7914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Mandal and U. Chatterjee, “Synthesis and spectroscopy of CdS nanoparticles in amphiphilic diblock copolymer micelles,” Journal of Chemical Physics, vol. 126, no. 13, Article ID 134507, 8 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. F. Towey, A. Khan-Lodhi, and B. H. Robinson, “Kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-Aerosol-OT-oil microemulsions,” Journal of the Chemical Society, Faraday Transactions, vol. 86, no. 22, pp. 3757–3762, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Agostiano, M. Catalano, M. L. Curri, M. Della Monica, L. Manna, and L. Vasanelli, “Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion,” Micron, vol. 31, no. 3, pp. 253–258, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Caponetti, L. Pedone, D. Chillura Martino, V. Pantò, and V. Turco Liveri, “Synthesis, size control, and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions,” Materials Science and Engineering C, vol. 23, no. 4, pp. 531–539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. P. S. Khiew, S. Radiman, N. M. Huang, and M. S. Ahmad, “Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion,” Journal of Crystal Growth, vol. 254, no. 1-2, pp. 235–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. P. S. Khiew, N. M. Huang, S. Radiman, and M. S. Ahmad, “Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion,” Materials Letters, vol. 58, no. 3-4, pp. 516–521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Capek, “Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions,” Advances in Colloid and Interface Science, vol. 110, no. 1-2, pp. 49–74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Eastoe, M. J. Hollamby, and L. Hudson, “Recent advances in nanoparticle synthesis with reversed micelles,” Advances in Colloid and Interface Science, vol. 128–130, pp. 5–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Petit, T. K. Jain, F. Billoudet, and M. P. Pileni, “Oil in water micellar solution used to synthesize CdS particles: structural study and photoelectron transfer reaction,” Langmuir, vol. 10, no. 12, pp. 4446–4450, 1994. View at Google Scholar · View at Scopus
  33. M. A. López-Quintela, “Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control,” Current Opinion in Colloid & Interface Science, vol. 8, no. 2, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. P. D. I. Fletcher, A. M. Howe, and B. H. Robinson, “The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion,” Journal of the Chemical Society, Faraday Transactions 1, vol. 83, no. 4, pp. 985–1006, 1987. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. Suarez, H. Lévy, and J. Lang, “Effect of addition of polymer to water-in-oil microemulsions on droplet size and exchange of material between droplets,” Journal of Physical Chemistry, vol. 97, no. 38, pp. 9808–9816, 1993. View at Google Scholar · View at Scopus
  36. D. Papoutsi, P. Lianos, and W. Brown, “Interaction of polyethylene glycol with water-in-oil microemulsions. 3. Effect of polymer size and polymer concentration,” Langmuir, vol. 10, no. 10, pp. 3402–3405, 1994. View at Google Scholar · View at Scopus
  37. P. Lianos, S. Modes, G. Staikos, and W. Brown, “Interaction of poly(oxyethylene glycol) with cyclohexane-pentanol-sodium dodecyl sulfate water-in-oil microemulsions,” Langmuir, vol. 8, no. 4, pp. 1054–1059, 1992. View at Google Scholar · View at Scopus
  38. A. Kabalnov, U. Olsson, K. Thuresson, and H. Wennerström, “Polymer effects on the phase equilibrium of a balanced microemulsion: adsorbing versus nonadsorbing polymers,” Langmuir, vol. 10, no. 13, pp. 4509–4513, 1994. View at Google Scholar · View at Scopus
  39. C. González-Blanco, L. J. Rodríguez, and M. M. Velázquez, “Effect of the addition of water-soluble polymers on the structure of aerosol OT water-in-oil microemulsions: a fourier transform infrared spectroscopy study,” Langmuir, vol. 13, no. 7, pp. 1938–1945, 1997. View at Google Scholar · View at Scopus
  40. M. J. Suarez and J. Lang, “Effect of addition of water-soluble polymers in water-in-oil microemulsions made with anionic and cationic surfactants,” Journal of Physical Chemistry, vol. 99, no. 13, pp. 4626–4631, 1995. View at Google Scholar · View at Scopus
  41. W. Meier, “Poly(oxyethylene) adsorption in water/oil microemulsions: a conductivity study,” Langmuir, vol. 12, no. 5, pp. 1188–1192, 1996. View at Google Scholar · View at Scopus
  42. J. Appell, C. Ligoure, and G. Porte, “Bending elasticity of a curved amphiphilic film decorated with anchored copolymers: a small angle neutron scattering study,” Journal of Statistical Mechanics, vol. 2004, Article ID P08002, 2004. View at Publisher · View at Google Scholar
  43. K. C. Tam and E. Wyn-Jones, “Insights on polymer surfactant complex structures during the binding of surfactants to polymers as measured by equilibrium and structural techniques,” Chemical Society Reviews, vol. 35, no. 8, pp. 693–709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Shioi, M. Harada, M. Obika, and M. Adachi, “Structure and properties of fluids composed of polyelectrolyte and ionic surfactant in organic phase: poly(acrylic acid) and didodecyldimethylammonium bromide,” Langmuir, vol. 14, no. 17, pp. 4737–4743, 1998. View at Google Scholar · View at Scopus
  45. M. Fechner, M. Kramer, E. Kleinpeter, and J. Koetz, “Polyampholyte-modified ionic microemulsions,” Colloid and Polymer Science, vol. 287, no. 10, pp. 1145–1153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Fechner and J. Koetz, “Polyampholyte-surfactant film tuning in reverse microemulsions,” Langmuir, vol. 27, no. 9, pp. 5316–5323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Note, S. Kosmella, and J. Koetz, “Structural changes in poly(ethyleneimine) modified microemulsion,” Journal of Colloid and Interface Science, vol. 302, no. 2, pp. 662–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. A. H. Poghosyan, L. H. Arsenyan, H. H. Gharabekyan, S. Falkenhagen, J. Koetz, and A. A. Shahinyan, “Molecular dynamics simulations of inverse sodium dodecyl sulfate (SDS) micelles in a mixed toluene/pentanol solvent in the absence and presence of poly(diallyldimethylammonium chloride) (PDADMAC),” Journal of Colloid and Interface Science, vol. 358, no. 1, pp. 175–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Koetz, J. Bahnemann, G. Lucas, B. Tiersch, and S. Kosmella, “Polyelectrolyte-modified microemulsions as new templates for the formation of nanoparticles,” Colloids and Surfaces A, vol. 250, no. 1–3, pp. 423–430, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Koetz, J. Baier, and S. Kosmella, “Formation of zinc sulfide and hydroxylapatite nanoparticles in polyelectrolyte-modified microemulsions,” Colloid and Polymer Science, vol. 285, no. 15, pp. 1719–1726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Baier, J. Koetz, S. Kosmella, B. Tiersch, and H. Rehage, “Polyelectrolyte-modified inverse microemulsions and their use as templates for the formation of magnetite nanoparlicles,” Journal of Physical Chemistry B, vol. 111, no. 29, pp. 8612–8618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Note, J. Koetz, L. Wattebled, and A. Laschewsky, “Effect of a new hydrophobically modified polyampholyte on the formation of inverse microemulsions and the preparation of gold nanoparticles,” Journal of Colloid and Interface Science, vol. 308, no. 1, pp. 162–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Zhang, L. Sun, C. Liao, and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method,” Solid State Communications, vol. 124, no. 1-2, pp. 45–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. F. Nazar, O. Myakonkaya, S. S. Shah, and J. Eastoe, “Separating nanoparticles from microemulsions,” Journal of Colloid and Interface Science, vol. 354, no. 2, pp. 624–629, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. M. J. Hollamby, J. Eastoe, A. Chemelli et al., “Separation and purification of nanoparticles in a single step,” Langmuir, vol. 26, no. 10, pp. 6989–6994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Abécassis, F. Testard, and T. Zemb, “Gold nanoparticle synthesis in worm-like catanionic micelles: microstructure conservation and temperature induced recovery,” Soft Matter, vol. 5, no. 5, pp. 974–978, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Zhang, J. Liu, J. He et al., “Organic reactions and nanoparticle preparation in Co2-induced water/P104/p-xylene microemulsions,” Chemistry, vol. 9, no. 10, pp. 2167–2172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Salabat, J. Eastoe, A. Vesperinas, R. F. Tabor, and K. J. Muteh, “Photorecovery of nanoparticles from an organic solvent,” Langmuir, vol. 24, no. 5, pp. 1829–1832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. J. F. Liu, R. Liu, Y. G. Yin, and G. B. Jiang, “Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase,” Chemical Communications, no. 12, pp. 1514–1516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Tamborra, M. Striccoli, R. Comparelli, M. L. Curri, A. Petrella, and A. Agostiano, “Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer,” Nanotechnology, vol. 15, no. 4, pp. S240–S244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. I. R. Collins, “Surface electrical properties of barium sulfate modified by adsorption of poly α, β aspartic acid,” Journal of Colloid and Interface Science, vol. 212, no. 2, pp. 535–544, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. D. H. Chen and Y. Y. Chen, “Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid,” Journal of Colloid and Interface Science, vol. 235, no. 1, pp. 9–14, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Koetz, K. Gawlitza, and S. Kosmella, “Formation of organically and inorganically passivated CdS nanoparticles in reverse microemulsions,” Colloid and Polymer Science, vol. 288, no. 3, pp. 257–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. L. Curri, A. Agostiano, L. Manna et al., “Synthesis and characterization of CdS nanoclusters in a quaternary microemulsion the role of the cosurfactant,” Journal of Physical Chemistry B, vol. 104, no. 35, pp. 8391–8397, 2000. View at Google Scholar · View at Scopus
  65. D. Patidar, K. Rathore, N. Saxena, K. Sharma, and T. Sharma, “Energy band gap studies of CdS nanomaterials,” Journal of Nano Research, vol. 3, pp. 97–102, 2008. View at Google Scholar
  66. T. Pons, H. T. Uyeda, I. L. Medintz, and H. Mattoussi, “Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots,” Journal of Physical Chemistry B, vol. 110, no. 35, pp. 20308–20316, 2006. View at Publisher · View at Google Scholar · View at Scopus