Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 505034, 7 pages
Research Article

Elastic Analysis for Nanocontact Problem with Surface Stress Effects under Shear Load

School of Science, Lanzhou University of Technology, Lanzhou 730050, China

Received 24 February 2012; Accepted 15 May 2012

Academic Editor: Sergio J. Mejía-Rosales

Copyright © 2012 D. X. Lei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Consideration of surface stress effects on the elastic field of nanocontact problem has extensive applications in several modern problems of solid mechanics. In this paper, the effects of surface stress on the contact problem at nanometers are studied in the frame of surface elasticity theory. Fourier integral transform method is adopted to derive the fundamental solution of the nanocontact problem under shear load. As two special cases, the deformations induced by a uniformly distributed shear load and a concentrated shear force are discussed in detail, respectively. The results indicate some interesting characteristics in nanocontact mechanics, which are distinctly different from those in macrocontact problem. At nanoscale, both the contact stresses and the displacements on the deformed surface transit continuously across the uniform distributed shear load boundary as a result of surface stress. In addition, the indent depth and the contact stress depend strongly on the surface stress for nanoindentation.