Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 674168, 9 pages
http://dx.doi.org/10.1155/2012/674168
Research Article

Electrochromic Devices Based on Porous Tungsten Oxide Thin Films

1Laboratoire de Recherche en Matériaux et Micro-Spectroscopies Raman et FTIR, Université de Moncton—Campus de Shippagan, 218 Boulevard J.-D. Gauthier, Shippagan, NB, Canada E8S 1P6
2Physics Department, Mount Allison University, 67 York Street, Sackville, NB, Canada E4L 1E6

Received 29 May 2012; Accepted 22 June 2012

Academic Editor: Vo-Van Truong

Copyright © 2012 Y. Djaoued et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Rossinyol, A. Prim, E. Pellicer et al., “Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications,” Advanced Functional Materials, vol. 17, no. 11, pp. 1801–1806, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. He and J. Yao, “Photochromic materials based on tungsten oxide,” Journal of Materials Chemistry, vol. 17, no. 43, pp. 4547–4557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. C. G. Granqvist, “Out of a niche,” Nature Materials, vol. 5, no. 2, pp. 89–90, 2006. View at Google Scholar · View at Scopus
  4. S. K. Deb, “Opportunities and challenges in science and technology of WO3 for electrochromic and related applications,” Solar Energy Materials and Solar Cells, vol. 92, no. 2, pp. 245–258, 2008. View at Publisher · View at Google Scholar
  5. C. G. Granqvist, “Electrochromic tungsten oxide films: review of progress 1993–1998,” Solar Energy Materials and Solar Cells, vol. 60, no. 3, pp. 201–262, 2000. View at Publisher · View at Google Scholar
  6. E. Stathatos, P. Lianos, U. Lavrencic-Stangar, and B. Orel, “A high-performance solid-state dye-sensitized photoelectrochemical cell employing a nanocomposite gel electrolyte made by the sol-gel route,” Advanced Materials, vol. 14, no. 5, pp. 354–357, 2002. View at Publisher · View at Google Scholar
  7. P. R. Somani and S. Radhakrishnan, “Electrochromic materials and devices: present and future,” Materials Chemistry and Physics, vol. 77, no. 1, pp. 117–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Balaji, A.-S. Albert, Y. Djaoued, and R. Brüning, “Micro-Raman spectroscopic characterization of a tunable electrochromic device for application in smart windows,” Journal of Raman Spectroscopy, vol. 40, no. 1, pp. 92–100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Balaji, Y. Djaoued, A.-S. Albert, R. Z. Ferguson, and R. Brüning, “Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows,” Chemistry of Materials, vol. 21, no. 7, pp. 1381–1389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S.-H. Baeck, K. S. Choi, T. F. Jaramillo, G. D. Stucky, and E. W. McFarland, “Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films,” Advanced Materials, vol. 15, no. 15, pp. 1269–1273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Cheng, E. Baudrin, B. Dunn, and J. I. Zink, “Synthesis and electrochromic properties of mesoporous tungsten oxide,” Journal of Materials Chemistry, vol. 11, no. 1, pp. 92–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Djaoued, P. V. Ashrit, S. Badilescu, and R. Brüning, “Synthesis and characterization of macroporous tungsten oxide films for electrochromic application,” Journal of Sol-Gel Science and Technology, vol. 28, no. 2, pp. 235–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Santato, M. Odziemkowski, M. Ulmann, and J. Augustynski, “Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications,” Journal of the American Chemical Society, vol. 123, no. 43, pp. 10639–10649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Djaoued, S. Priya, and S. Balaji, “Low temperature synthesis of nanocrystalline WO3 films by sol-gel process,” Journal of Non-Crystalline Solids, vol. 354, no. 2–9, pp. 673–679, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, New York, NY, USA, 1995.
  16. Q. Zhong, J. R. Dahn, and K. Colbow, “Lithium intercalation into WO3 and the phase diagram of LixWO3,” Physical Review B, vol. 46, no. 4, pp. 2554–2560, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kuzmin, J. Purans, E. Cazzanelli, C. Vinegoni, and G. Mariotto, “X-ray diffraction, extended x-ray absorption fine structure and Raman spectroscopy studies of WO3 powders and (1-x)WO3-y·xReO2 mixtures,” Journal of Applied Physics, vol. 84, no. 10, pp. 5515–5524, 1998. View at Google Scholar · View at Scopus
  18. O. Pyper, A. Kaschner, and C. Thomsen, “In situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytes,” Solar Energy Materials and Solar Cells, vol. 71, no. 4, pp. 511–522, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Cazzanelli, C. Vinegoni, G. Mariotto, A. Kuzmin, and J. Purans, “Low-temperature polymorphism in tungsten trioxide powders and its dependence on mechanical treatments,” Journal of Solid State Chemistry, vol. 143, no. 1, pp. 24–32, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Kudo, “A new heteropolyacid with carbon as a heteroatom in a Keggin-like structure,” Nature, vol. 312, no. 5994, pp. 537–538, 1984. View at Publisher · View at Google Scholar · View at Scopus
  21. M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlarz, “Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates,” Journal of Solid State Chemistry, vol. 67, no. 2, pp. 235–247, 1987. View at Google Scholar · View at Scopus
  22. B. Pecquenard, H. Lecacheux, J. Livage, and C. Julien, “Orthorhombic WO3 formed via a Ti-stabilized WO3·1/3H2O phase,” Journal of Solid State Chemistry, vol. 135, no. 1, pp. 159–168, 1998. View at Google Scholar · View at Scopus
  23. Powder Diffraction Files Inorganic and Organic (Card No: 85-2460 (Hexagonal-WO3), JCPDS-International Centre for Diffraction Data, PDF2 Data Base, Swarthmore, Pa, USA, 1996.
  24. M. Hibino, W. Han, and T. Kudo, “Electrochemical lithium intercalation into a hexagonal WO3 framework and its structural change,” Solid State Ionics, vol. 135, no. 1–4, pp. 61–69, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Balaji, Y. Djaoued, A. S. Albert, R. Brüning, N. Beaudoin, and J. Robichaud, “Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices,” Journal of Materials Chemistry, vol. 21, no. 11, pp. 3940–3948, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. C. G. Granqvist, E. Avendaño, and A. Azens, “Electrochromic coatings and devices: survey of some recent advances,” Thin Solid Films, vol. 442, no. 1-2, pp. 201–211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Amra, “From light scattering to the microstructure of thin-film multilayers,” Applied Optics, vol. 32, no. 28, pp. 5481–5491, 1993. View at Google Scholar · View at Scopus