Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 715838, 7 pages
http://dx.doi.org/10.1155/2012/715838
Research Article

Cytotoxicity of Carbon Nanotubes on J774 Macrophages Is a Purification-Dependent Effect

1Departamento de Energías Renovables y Protección al Medio Ambiente, Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31109 Chihuahua, CHIH, Mexico
2Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, 31125 Chihuahua, CHIH, Mexico

Received 16 February 2012; Revised 3 May 2012; Accepted 8 May 2012

Academic Editor: Krasimir Vasilev

Copyright © 2012 Silvia Lorena Montes-Fonseca et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Tagmatarchis and M. Prato, “Carbon-based materials: from fullerene nanostructures to functionalized carbon nanotubes,” Pure and Applied Chemistry, vol. 77, no. 10, pp. 1675–1684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Zhao and R. Liu, “Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels,” Environment International, vol. 40, no. 1, pp. 244–255, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Singh, D. Pantarotto, L. Lacerda et al., “Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3357–3362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, “Covalently functionalized nanotubes as nanometresized probes in chemistry and biology,” Nature, vol. 394, no. 6688, pp. 52–55, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hirsch, “Functionalization of single-walled carbon nanotubes,” Angewandte Chemie - International Edition, vol. 41, no. 11, pp. 1853–1859, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. E. McNeil, “Nanotechnology for the biologist,” Journal of Leukocyte Biology, vol. 78, no. 3, pp. 585–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Fifis, A. Gamvrellis, B. Crimeen-Irwin et al., “Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors,” Journal of Immunology, vol. 173, no. 5, pp. 3148–3154, 2004. View at Google Scholar · View at Scopus
  8. D. Pantarotto, C. D. Partidos, R. Graff et al., “Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides,” Journal of the American Chemical Society, vol. 125, no. 20, pp. 6160–6164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. V. L. Colvin, “The potential environmental impact of engineered nanomaterials,” Nature Biotechnology, vol. 21, no. 10, pp. 1166–1170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Magrez, S. Kasas, V. Salicio et al., “Cellular toxicity of carbon-based nanomaterials,” Nano Letters, vol. 6, no. 6, pp. 1121–1125, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Ding, J. Stilwell, T. Zhang et al., “Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast,” Nano Letters, vol. 5, no. 12, pp. 2448–2464, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Bottini, S. Bruckner, K. Nika et al., “Multi-walled carbon nanotubes induce T lymphocyte apoptosis,” Toxicology Letters, vol. 160, no. 2, pp. 121–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Y. Guo, J. Zhang, Y. F. Zheng, J. Yang, and X. Q. Zhu, “Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro,” Mutation Research - Genetic Toxicology and Environmental Mutagenesis, vol. 721, no. 2, pp. 184–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. N. A. Monteiro-Riviere, R. J. Nemanich, A. O. Inman, Y. Y. Wang, and J. E. Riviere, “Multi-walled carbon nanotube interactions with human epidermal keratinocytes,” Toxicology Letters, vol. 155, no. 3, pp. 377–384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Cheng, K. H. Müller, K. K. K. Koziol et al., “Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells,” Biomaterials, vol. 30, no. 25, pp. 4152–4160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. L. Di Giorgio, S. D. Bucchianico, A. M. Ragnelli, P. Aimola, S. Santucci, and A. Poma, “Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy,” Mutation Research - Genetic Toxicology and Environmental Mutagenesis, vol. 722, no. 1, pp. 20–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. G. V. Letsou, J. H. Connelly, R. M. Delgado et al., “Is native aortic valve commissural fusion in patients with long-term left ventricular assist devices associated with clinically important aortic insufficiency?” Journal of Heart and Lung Transplantation, vol. 25, no. 4, pp. 395–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. A. Poland, R. Duffin, I. Kinloch et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, vol. 3, no. 7, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Saito, K. Matsushige, and K. Tanaka, “Chemical treatment and modification of multi-walled carbon nanotubes,” Physica B, vol. 323, no. 1-4, pp. 280–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Aguilar-Elguézabal, W. Antúnez, G. Alonso, F. P. Delgado, F. Espinosa, and M. Miki-Yoshida, “Study of carbon nanotubes synthesis by spray pyrolysis and model of growth,” Diamond and Related Materials, vol. 15, no. 9, pp. 1329–1335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Hu, P. Bhowmik, B. Zhao, M. A. Hamon, M. E. Itkis, and R. C. Haddon, “Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration,” Chemical Physics Letters, vol. 345, no. 1-2, pp. 25–28, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Google Scholar · View at Scopus
  23. C. Cheng, K. H. Müller, K. K. K. Koziol et al., “Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells,” Biomaterials, vol. 30, no. 25, pp. 4152–4160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Zhang, H. Zou, Q. Qing et al., “Effect of chemical oxidation on the structure of single-walled carbon nanotubes,” Journal of Physical Chemistry B, vol. 107, no. 16, pp. 3712–3718, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Keszler, L. Nemes, S. R. Ahmad, and X. Fang, “Characterisation of carbon nanotube materials by Raman spectroscopy and microscopy - A case study of multiwalled and singlewalled samples,” Journal of Optoelectronics and Advanced Materials, vol. 6, no. 4, pp. 1269–1274, 2004. View at Google Scholar · View at Scopus
  26. V. Datsyuk, M. Kalyva, K. Papagelis et al., “Chemical oxidation of multiwalled carbon nanotubes,” Carbon, vol. 46, no. 6, pp. 833–840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Montes-Fonseca, E. Orrantia-Borunda, A. Aguilar-Elguezabal, C. G. Horta, P. Talamás-Rohana, and B. Sánchez-Ramirez, “Cytotoxicity of functionalized carbon nanotubes in J774A macrophages,” Nanomedicine: Nanotechnology, Biology and Medicine. In press. View at Publisher · View at Google Scholar
  28. K. Yamashita, Y. Yoshioka, K. Higashisaka et al., “Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape,” Inflammation, vol. 33, no. 4, pp. 276–280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Sato, A. Yokoyama, K. I. Shibata et al., “Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo,” Molecular BioSystems, vol. 1, no. 2, pp. 176–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Pulskamp, S. Diabaté, and H. F. Krug, “Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants,” Toxicology Letters, vol. 168, no. 1, pp. 58–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Coccini, E. Roda, D. A. Sarigiannis et al., “Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells,” Toxicology, vol. 269, no. 1, pp. 41–53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Vittorio, V. Raffa, and A. Cuschieri, “Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 5, no. 4, pp. 424–431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. Brown, I. A. Kinloch, U. Bangert et al., “An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis,” Carbon, vol. 45, no. 9, pp. 1743–1756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. P. M. V. Raja, J. Connolley, G. P. Ganesan et al., “Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells,” Toxicology Letters, vol. 169, no. 1, pp. 51–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Wick, P. Manser, L. K. Limbach et al., “The degree and kind of agglomeration affect carbon nanotube cytotoxicity,” Toxicology Letters, vol. 168, no. 2, pp. 121–131, 2007. View at Publisher · View at Google Scholar · View at Scopus