Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 746960, 11 pages
http://dx.doi.org/10.1155/2012/746960
Research Article

Control of In Vivo Transport and Toxicity of Nanoparticles by Tea Melanin

1Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
2Department of Obstetrics and Gynecology, China Medical University and Hospital, 91 Hsueh Shih Road, Taichung 404, Taiwan
3College of Medicine, China Medical University, Taichung 40402, Taiwan
4Institute of Chemical Kinetics & Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
5Institute of Electrical Control Engineering, National Chiao Tung University, 1001 University Road, EE772, Hsinchu 300, Taiwan
6Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia

Received 5 April 2012; Accepted 14 May 2012

Academic Editor: Xiaoming Li

Copyright © 2012 Yu-Shiun Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol. 5, no. 3, pp. 161–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J.-C. Olivier, “Drug transport to brain with targeted nanoparticles,” NeuroRx, vol. 2, no. 1, pp. 108–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. C. Yih and M. Al-Fandi, “Engineered nanoparticles as precise drug delivery systems,” Journal of Cellular Biochemistry, vol. 97, no. 6, pp. 1184–1190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307–1315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. S. Hauck, A. A. Ghazani, and W. C. W. Chan, “Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells,” Small, vol. 4, no. 1, pp. 153–159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. F. Paciotti, L. Myer, D. Weinreich et al., “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery, vol. 11, no. 3, pp. 169–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han, and C. A. Mirkin, “Oligonucleotide-modified gold nanoparticles for infracellular gene regulation,” Science, vol. 312, no. 5776, pp. 1027–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials, vol. 29, no. 12, pp. 1912–1919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small, vol. 1, no. 3, pp. 325–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. C. M. Goodman, C. D. McCusker, T. Yilmaz, and V. M. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chemistry, vol. 15, no. 4, pp. 897–900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Khan, B. Pillai, T. K. Das, Y. Singh, and S. Maiti, “Molecular effects of uptake of gold nanoparticles in HeLa cells,” ChemBioChem, vol. 8, no. 11, pp. 1237–1240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. B. Male, B. Lachance, S. Hrapovic, G. Sunahara, and J. H. T. Luong, “Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy,” Analytical Chemistry, vol. 80, no. 14, pp. 5487–5493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Murphy, A. M. Gole, J. W. Stone et al., “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1721–1730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, and A. K. Dasgupta, “Cell selective response to gold nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 3, no. 2, pp. 111–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir, vol. 21, no. 23, pp. 10644–10654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity,” Langmuir, vol. 22, no. 1, pp. 2–5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Letters, vol. 6, no. 4, pp. 662–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Arnida, A. Malugin, and H. Ghandehari, “Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres,” Journal of Applied Toxicology, vol. 30, no. 3, pp. 212–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Pan, S. Neuss, A. Leifert et al., “Size-dependent cytotoxicity of gold nanoparticles,” Small, vol. 3, no. 11, pp. 1941–1949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. S. Chen, Y. C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nanoscale Research Letters, vol. 4, no. 8, pp. 858–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Pernodet, X. Fang, Y. Sun et al., “Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts,” Small, vol. 2, no. 6, pp. 766–773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Qiu, Y. Liu, L. Wang et al., “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials, vol. 31, no. 30, pp. 7606–7619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. G. Rayavarapu, W. Petersen, L. Hartsuiker et al., “In vitro toxicity studies of polymer-coated gold nanorods,” Nanotechnology, vol. 21, no. 14, Article ID 145101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. V. M. Sava, B. N. Galkin, M. Y. Hong, P. C. Yang, and G. S. Huang, “A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity,” Food Research International, vol. 34, no. 4, pp. 337–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. V. M. Sava, S. M. Yang, M. Y. Hong, P. C. Yang, and G. S. Huang, “Isolation and characterization of melanic pigments derived from tea and tea polyphenols,” Food Chemistry, vol. 73, no. 2, pp. 177–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. Y.-C. Hung, V. M. Sava, S. Y. Makan, T.-H. J. Chen, M.-Y. Hong, and G. S. Huang, “Antioxidant activity of melanins derived from tea: comparison between different oxidative states,” Food Chemistry, vol. 78, no. 2, pp. 233–240, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. C. Hung, V. M. Sava, C. L. Juang, T. C. Yeh, W. C. Shen, and G. S. Huang, “Gastrointestinal enhancement of MRI with melanin derived from tea leaves (Thea sinensis Linn.),” Journal of Ethnopharmacology, vol. 79, no. 1, pp. 75–79, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. V. M. Sava, Y. C. Hung, B. N. Golkin, M. Y. Hong, and G. S. Huang, “Protective activity of melanin-like pigment derived from tea on Drosophila melasnogaster against the toxic effects of benzidine,” Food Research International, vol. 35, no. 7, pp. 619–626, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. C. Hung, G. S. Huang, L. W. Lin, M. Y. Hong, and P. S. Se, “Thea sinensis melanin prevents cisplatin-induced nephrotoxicity in mice,” Food and Chemical Toxicology, vol. 45, no. 7, pp. 1123–1130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Y.-C. Hung, G. S. Huang, V. M. Sava, V. A. Blagodarsky, and M.-Y. Hong, “Protective effects of tea melanin against 2,3,7,8-tetrachlorodibenzo-p- dioxin-induced toxicity: antioxidant activity and aryl hydrocarbon receptor suppressive effect,” Biological and Pharmaceutical Bulletin, vol. 29, no. 11, pp. 2284–2291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. C. Hung, V. M. Sava, V. A. Blagodarsky, M. Y. Hong, and G. S. Huang, “Protection of tea melanin on hydrazine-induced liver injury,” Life Sciences, vol. 72, no. 9, pp. 1061–1071, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. C. Hung, V. M. Sava, S. Y. Makan, M. Y. Hong, and G. S. Huang, “Preventive effect of Thea sinensis melanin against acetaminophen-induced hepatic injury in mice,” Journal of Agricultural and Food Chemistry, vol. 52, no. 16, pp. 5284–5289, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. S. Huang, M.-T. Wang, C.-W. Su, Y.-S. Chen, and M.-Y. Hong, “Picogram detection of metal ions by melanin-sensitized piezoelectric sensor,” Biosensors and Bioelectronics, vol. 23, no. 3, pp. 319–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chemistry of Materials, vol. 12, no. 2, pp. 306–313, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. F. K. Liu, C. J. Ker, Y. C. Chang, F. H. Ko, T. C. Chu, and B. T. Dai, “Microwave heating for the preparation of nanometer gold particles,” Japanese Journal of Applied Physics, Part 1, vol. 42, no. 6 B, pp. 4152–4158, 2003. View at Google Scholar · View at Scopus
  36. M. T. Hsieh, C. R. Wu, and C. C. Hsieh, “Ameliorating effect of p-hydroxybenzyl alcohol on cycloheximide-induced impairment of passive avoidance response in rats: interactions with compounds acting at 5-HT(1A) and 5-HT2 receptors,” Pharmacology Biochemistry and Behavior, vol. 60, no. 2, pp. 337–343, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. C. J. Addison, S. O. Konorov, A. G. Brolo, M. W. Blades, and R. F. B. Turner, “Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes raman scattering and second harmonic generation response,” Journal of Physical Chemistry C, vol. 113, no. 9, pp. 3586–3592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Strokes Raman scattering microscopy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 46, pp. 16807–16812, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, “Amplification of coherent anti-Stokes Raman scattering by a metallic nanostructure for a high resolution vibration microscopy,” Journal of Applied Physics, vol. 95, no. 5, pp. 2676–2681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. X. Qian, X. H. Peng, D. O. Ansari et al., “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology, vol. 26, no. 1, pp. 83–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-S. Chen, Y.-C. Hung, L.-W. Lin, I. Liau, M.-Y. Hong, and G. S. Huang, “Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles,” Nanotechnology, vol. 21, no. 48, Article ID 485102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Y.-S. Chen, Y.-C. Hung, W.-H. Lin, and G. S. Huang, “Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide,” Nanotechnology, vol. 21, no. 19, Article ID 195101, 2010. View at Publisher · View at Google Scholar · View at Scopus