Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012, Article ID 853416, 9 pages
http://dx.doi.org/10.1155/2012/853416
Research Article

Gold/Chitosan Nanocomposites with Specific Near Infrared Absorption for Photothermal Therapy Applications

1Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA
2Conn Center for Renewable Energy Research and Speed School of Engineering, University of Louisville, Louisville, KY 40292, USA

Received 5 May 2012; Revised 27 July 2012; Accepted 27 August 2012

Academic Editor: Gaurav Mago

Copyright © 2012 Guandong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, vol. 26, no. 18, pp. 3995–4021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Shenhar, T. B. Norsten, and V. M. Rotello, “Polymer-mediated nanoparticle assembly: structural control and applications,” Advanced Materials, vol. 17, no. 6, pp. 657–669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, “A whole blood immunoassay using gold nanoshells,” Analytical Chemistry, vol. 75, no. 10, pp. 2377–2381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. S. Grubisha, R. J. Lipert, H. Y. Park, J. Driskell, and M. D. Porter, “Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced raman scattering and immunogold labels,” Analytical Chemistry, vol. 75, no. 21, pp. 5936–5943, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Niidome, M. Yamagata, Y. Okamoto et al., “PEG-modified gold nanorods with a stealth character for in vivo applications,” Journal of Controlled Release, vol. 114, no. 3, pp. 343–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Letters, vol. 7, no. 7, pp. 1929–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Alric, J. Taleb, G. Le Duc et al., “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” Journal of the American Chemical Society, vol. 130, no. 18, pp. 5908–5915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers in Medical Science, vol. 23, no. 3, pp. 217–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. R. Stauffer, “Evolving technology for thermal therapy of cancer,” International Journal of Hyperthermia, vol. 21, no. 8, pp. 731–744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. N. Goldberg, “Radiofrequency tumor ablation: principles and techniques,” European Journal of Ultrasound, vol. 13, no. 2, pp. 129–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Valdagni, M. Amichetti, and G. Pani, “Radical radiation alone versus radical radiation plus microwave hyperthermia for N3 (TNM-UICC) neck nodes: a prospective randomized clinical trial,” International Journal of Radiation Oncology Biology Physics, vol. 15, no. 1, pp. 13–24, 1988. View at Google Scholar · View at Scopus
  13. R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, “Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy,” Journal of Physics Condensed Matter, vol. 18, no. 38, pp. S2919–S2934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Fink, H. van der Piepen, and W. Schneider, “Optical surface plasmon resonance as a measurement tool,” pp. 419–423, 1975. View at Google Scholar · View at Scopus
  15. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles,” Cancer Letters, vol. 239, no. 1, pp. 129–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” Journal of the American Chemical Society, vol. 128, no. 6, pp. 2115–2120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Hu, H. Petrova, J. Chen et al., “Ultrafast laser studies of the photothermal properties of gold nanocages,” Journal of Physical Chemistry B, vol. 110, no. 4, pp. 1520–1524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Zhang, J. B. Jasinski, J. L. Howell, D. Patel, D. P. Stephens, and A. M. Gobin, “Tunability and stability of gold nanoparticles obtained from chloroauric acid and sodium thiosulfate reaction,” Nanoscale Research Letters, vol. 7, article 337, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Shigemasa and S. Minami, “Applications of chitin and chitosan for biomaterials,” Biotechnology and Genetic Engineering Reviews, vol. 13, pp. 383–420, 1996. View at Google Scholar · View at Scopus
  20. M. J. Laudenslager, J. D. Schiffman, and C. L. Schauer, “Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles,” Biomacromolecules, vol. 9, no. 10, pp. 2682–2685, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Wedmore, J. G. McManus, A. E. Pusateri, and J. B. Holcomb, “A special report on the chitosan-based hemostatic dressing: experience in current combat operations,” Journal of Trauma-Injury, Infection and Critical Care, vol. 60, no. 3, pp. 655–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Sun, G. Zhang, D. Patel, D. Stephens, and A. M. Gobin, “Targeted cancer therapy by immunoconjugated gold-gold sulfide nanoparticles using protein G as a cofactor,” Annals of Biomedical Engineering, vol. 40, no. 10, pp. 2131–2139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. X. G. Chen and H. J. Park, “Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions,” Carbohydrate Polymers, vol. 53, no. 4, pp. 355–359, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Y. Liang and L. M. Zhang, “Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan,” Biomacromolecules, vol. 8, no. 5, pp. 1480–1486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Zhang, J. B. Jasinski, D. Patel, K. James, X. Sun, and A. M. Gobin, “Gold nanoparticles with tuning near infrared absorption via reaction of HAuCl4 and Na2S2O3 for low power photothermal cancer therapy,” MRS Procedings, vol. 1416, 2012. View at Google Scholar
  26. A. M. Gobin, E. M. Watkins, E. Quevedo, V. L. Colvin, and J. L. West, “Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent,” Small, vol. 6, no. 6, pp. 745–752, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Huang and X. Yang, “Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate,” Biomacromolecules, vol. 5, no. 6, pp. 2340–2346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. D. S. Dos Santos, P. J. G. Goulet, N. P. W. Pieczonka, O. N. Oliveira, and R. F. Aroca, “Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering,” Langmuir, vol. 20, no. 23, pp. 10273–10277, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. R. Selvakannan, S. Mandal, S. Phadtare, R. Pasricha, and M. Sastry, “Capping of gold nanoparticles by the amino acid lysine renders them water-dispersible,” Langmuir, vol. 19, no. 8, pp. 3545–3549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters, vol. 3, no. 8, pp. 1087–1090, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chemical Reviews, vol. 107, no. 11, pp. 4797–4862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Guibal, “Interactions of metal ions with chitosan-based sorbents: a review,” Separation and Purification Technology, vol. 38, no. 1, pp. 43–74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. P. Zhao, Z. Wang, and S. C. Wang, “Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane,” Journal of Membrane Science, vol. 217, no. 1-2, pp. 151–158, 2003. View at Publisher · View at Google Scholar · View at Scopus