Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 891347, 5 pages
http://dx.doi.org/10.1155/2012/891347
Research Article

Size-Dependent Dynamic Behavior of a Microcantilever Plate

School of Mechanical and Electronic Engineering, Harbin Institute of Technology, Harbin 150001, China

Received 18 February 2012; Revised 10 May 2012; Accepted 16 May 2012

Academic Editor: Grégory Guisbiers

Copyright © 2012 Xiaoming Wang and Fei Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Wang, J. Y. Chen, and X. Z. Zhao, “Comment on ‘Mechanism of flexural resonance frequency shift of a piezoelectric microcantilever sensor during humidity detection’,” Applied Physics Letters, vol. 93, no. 9, Article ID 096101, 2008. View at Publisher · View at Google Scholar
  2. D. Maraldo and R. Mutharasan, “Mass-change sensitivity of high-order mode of piezoelectric-excited millimeter-sized cantilever (PEMC) sensors: theory and experiments,” Sensors and Actuators B, vol. 143, no. 2, pp. 731–739, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Sansoz and T. Gang, “A force-matching method for quantitative hardness measurements by atomic force microscopy with diamond-tipped sapphire cantilevers,” Ultramicroscopy, vol. 111, no. 1, pp. 11–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Physical Review B, vol. 69, no. 16, Article ID 165410, p. 1, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. L. G. Zhou and H. Huang, “Are surfaces elastically softer or stiffer?” Applied Physics Letters, vol. 84, no. 11, Article ID 1940, 3 pages, 2004. View at Publisher · View at Google Scholar
  6. J. G. Guo and Y. P. Zhao, “The size-dependent elastic properties of nanofilm with surface effects,” Journal of Applied Physics, vol. 98, Article ID 074306, 2005. View at Google Scholar
  7. Q. Ma and D. R. Clarke, “Size dependent hardness of silver single crystals,” Journal of Materials Research, vol. 10, no. 4, pp. 853–863, 1995. View at Google Scholar · View at Scopus
  8. W. J. Poole, M. F. Ashby, and N. A. Fleck, “Micro-hardness of annealed and work-hardened copper polycrystals,” Scripta Metallurgica et Materialia, vol. 34, p. 559, 1996. View at Google Scholar
  9. D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, “Experiments and theory in strain gradient elasticity,” Journal of the Mechanics and Physics of Solids, vol. 51, no. 8, pp. 1477–1508, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kong, S. Zhou, Z. Nie, and K. Wang, “The size-dependent natural frequency of Bernoulli-Euler micro-beams,” International Journal of Engineering Science, vol. 46, no. 5, pp. 427–437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. M. Ma, X. L. Gao, and J. N. Reddy, “A microstructure-dependent Timoshenko beam model based on a modified couple stress theory,” Journal of the Mechanics and Physics of Solids, vol. 56, no. 12, pp. 3379–3391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. C. Tsiatas, “A new Kirchhoff plate model based on a modified couple stress theory,” International Journal of Solids and Structures, vol. 46, no. 13, pp. 2757–2764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Yin, Q. Qian, L. Wang, and W. Xia, “Vibration analysis of microscale plates based on modified couple stress theory,” Acta Mechanica Solida Sinica, vol. 23, no. 5, pp. 386–393, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Murmu and S. C. Pradhan, “Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity,” Journal of Applied Physics, vol. 106, no. 10, Article ID 104301, 2009. View at Publisher · View at Google Scholar