Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 896562, 9 pages
http://dx.doi.org/10.1155/2012/896562
Research Article

Functionalization of Mesoporous Silicon Nanoparticles for Targeting and Bioimaging Purposes

1School of Pharmacy, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
2Biocenter Kuopio, 70211 Kuopio, Finland
3Department of Neurology, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
4CN Services Ltd., Microkatu 1, 70210 Kuopio, Finland
5Department of Physics and Astronomy, University of Turku, Vesilinnantie 5, 20014 Turku, Finland
6Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland

Received 5 April 2012; Accepted 3 June 2012

Academic Editor: Renyun Zhang

Copyright © 2012 Jussi Rytkönen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Bayliss, R. Heald, D. I. Fletcher, and L. D. Buckberry, “Culture of mammalian cells on nanostructured silicon,” Advanced Materials, vol. 11, no. 4, pp. 318–321, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Salonen, A. M. Kaukonen, J. Hirvonen, and V. P. Lehto, “Mesoporous silicon in drug delivery applications,” Journal of Pharmaceutical Sciences, vol. 97, no. 2, pp. 632–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Limnell, J. Riikonen, J. Salonen et al., “Surface chemistry and pore size affect carrier properties of mesoporous silicon microparticles,” International Journal of Pharmaceutics, vol. 343, no. 1-2, pp. 141–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. E. Owens III and N. A. Peppas, “Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles,” International Journal of Pharmaceutics, vol. 307, no. 1, pp. 93–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Frank and L. F. Fries, “The role of complement in inflammation and phagocytosis,” Immunology Today, vol. 12, no. 9, pp. 322–326, 1991. View at Google Scholar · View at Scopus
  6. S. M. Moghimi, A. C. Hunter, and J. C. Murray, “Long-circulating and target-specific nanoparticles: theory to practice,” Pharmacological Reviews, vol. 53, no. 2, pp. 283–318, 2001. View at Google Scholar · View at Scopus
  7. Y. Geng, P. Dalhaimer, S. Cai et al., “Shape effects of filaments versus spherical particles in flow and drug delivery,” Nature Nanotechnology, vol. 2, no. 4, pp. 249–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. B. Huang, S. Mocherla, M. J. Heslinga, P. Charoenphol, and O. Eniola-Adefeso, “Dynamic and cellular interactions of nanoparticles in vascular-targeted drug delivery (review),” Molecular Membrane Biology, vol. 27, no. 4-6, pp. 190–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. S. Levchenko, R. Rammohan, A. N. Lukyanov, K. R. Whiteman, and V. P. Torchilin, “Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating,” International Journal of Pharmaceutics, vol. 240, no. 1-2, pp. 95–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Heurtault, P. Saulnier, B. Pech, J. E. Proust, and J. P. Benoit, “Physico-chemical stability of colloidal lipid particles,” Biomaterials, vol. 24, no. 23, pp. 4283–4300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, “Biodegradable long-circulating polymeric nanospheres,” Science, vol. 263, no. 5153, pp. 1600–1603, 1994. View at Google Scholar · View at Scopus
  12. J. Milton Harris, N. E. Martin, and M. Modi, “Pegylation: a novel process for modifying pharmacokinetics,” Clinical Pharmacokinetics, vol. 40, no. 7, pp. 539–551, 2001. View at Google Scholar · View at Scopus
  13. A. C. Faure, S. Dufort, V. Josserand et al., “Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings,” Small, vol. 5, no. 22, pp. 2565–2575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nature Nanotechnology, vol. 2, no. 12, pp. 751–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Targeting of drugs and nanoparticles to tumors,” Journal of Cell Biology, vol. 188, no. 6, pp. 759–768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Huhtala, P. Laakkonen, H. Sallinen, S. Ylä-Herttuala, and A. Närvänen, “In vivo SPECT/CT imaging of human orthotopic ovarian carcinoma xenografts with 111In-labeled monoclonal antibodies,” Nuclear Medicine and Biology, vol. 37, no. 8, pp. 957–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Koyama, M. Shimura, Y. Minemoto et al., “Evaluation of selective tumor detection by clinical magnetic resonance imaging using antibody-conjugated superparamagnetic iron oxide,” Journal of Controlled Release, vol. 159, no. 3, pp. 413–418, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. L. M. Bimbo, M. Sarparanta, H. A. Santos et al., “Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats,” ACS Nano, vol. 4, no. 6, pp. 3023–3032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Salonen, M. Björkqvist, E. Laine, and L. Niinistö, “Stabilization of porous silicon surface by thermal decomposition of acetylene,” Applied Surface Science, vol. 225, no. 1–4, pp. 389–394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Kovalainen, J. Mönkäre, E. Mäkilä et al., “Mesoporous Silicon (PSi) for sustained peptide delivery: effect of psi microparticle surface chemistry on peptide YY3-36 Release,” Pharmaceutical Research, vol. 29, no. 3, pp. 837–846, 2012. View at Publisher · View at Google Scholar
  21. L. Russo, F. Colangelo, R. Cioffi, I. Rea, and D. Stefano, “A mechanochemical approach to porous silicon nanoparticles fabrication,” Materials, vol. 4, no. 6, p. 1023, 2011. View at Publisher · View at Google Scholar
  22. M. Silvander, N. Bergstrand, and K. Edwards, “Linkage identity is a major factor in determining the effect of PEG-ylated surfactants on permeability of phosphatidylcholine liposomes,” Chemistry and Physics of Lipids, vol. 126, no. 1, pp. 77–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Sarparanta, L. M. Bimbo, J. Rytkoänen et al., “Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution,” Molecular Pharmaceutics, vol. 9, no. 3, pp. 654–663, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Matrix Science Ltd., “The Mascot search engine,” 2010, http://www.matrixscience.com/.
  25. M. Cerrada-Gimenez, J. Häyrinen, S. Juutinen, T. Reponen, J. Jänne, and L. Alhonen, “Proteomic analysis of livers from a transgenic mouse line with activated polyamine catabolism,” Amino Acids, vol. 38, no. 2, pp. 613–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. J. Deng, M. Liang, M. Monteiro, I. Toth, and R. F. Minchin, “Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation,” Nature Nanotechnology, vol. 6, no. 1, pp. 39–44, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. UniProt Consortium, “UniProt protein database,” 2011, http://www.uniprot.org/.
  28. J. H. Teichroeb, J. A. Forrest, and L. W. Jones, “Size-dependent denaturing kinetics of bovine serum albumin adsorbed onto gold nanospheres,” European Physical Journal E, vol. 26, no. 4, pp. 411–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Shang, J. H. Nuffer, J. S. Dordick, and R. W. Siegel, “Unfolding of ribonuclease a on silica nanoparticle surfaces,” Nano Letters, vol. 7, no. 7, pp. 1991–1995, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Lundqvist, I. Sethson, and B. H. Jonsson, “Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability,” Langmuir, vol. 20, no. 24, pp. 10639–10647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. I. Lynch, A. Salvati, and K. A. Dawson, “Protein-nanoparticle interactions: what does the cell see?” Nature Nanotechnology, vol. 4, no. 9, pp. 546–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. Flick, X. Du, D. P. Witte et al., “Leukocyte engagement of fibrin(ogen) via the integrin receptor αMβ2/Mac-1 is critical for host inflammatory response in vivo,” Journal of Clinical Investigation, vol. 113, no. 11, pp. 1596–1606, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Tanaka, L. S. Mangala, P. E. Vivas-Mejia et al., “Sustained small interfering RNA delivery by mesoporous silicon particles,” Cancer Research, vol. 70, no. 9, pp. 3687–3696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. N. F. Steinmetz and M. Manchester, “PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and Ex vivo,” Biomacromolecules, vol. 10, no. 4, pp. 784–792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Sheng, Y. Yuan, C. Liu, X. Tao, X. Shan, and F. Xu, “In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content,” Journal of Materials Science: Materials in Medicine, vol. 20, no. 9, pp. 1881–1891, 2009. View at Publisher · View at Google Scholar · View at Scopus