Research Article  Open Access
Ying Li, Yongfeng Li, Tianxing Wang, "The Size and Shape Dependence of Ferromagnetism in Nanomagnets", Journal of Nanomaterials, vol. 2012, Article ID 897203, 6 pages, 2012. https://doi.org/10.1155/2012/897203
The Size and Shape Dependence of Ferromagnetism in Nanomagnets
Abstract
The size and shape dependence of dynamic behaviors of nanomagnets is studied by the kinetic Monte Carlo method based on the transition state theory. We analyze the hysteresis curves of the nanomagnet systems with different shapes (or spin array patterns) in the presence of an external magnetic field. The results show that the magnetization of the chainshaped nanomagnet is more sensitive to the applied field than that of the oblongshaped or bulkshaped systems. For the same magnetic nanostructure, the coercive field presents an exponential decay with temperature. Moreover, the coercive field is found to be strongly dependent on the effective coordination number, which has different values corresponding to those systems of different size and shapes (spin array patterns).
1. Introduction
The need for the increase of datarecording densities in the magnetic recording technique has driven the size of magnetic particles used down into the nanometer range [1, 2]. As the dimensions of magnetic materials decrease from the bulk size down to the nanometer scale, the magnetic properties will undergo a dramatic transition. The magnetism depends strongly on the shape and size of magnetic nanostructures [3–10]. It was well known that the continual decrease of the size of the magnetic nanoparticles will lead to the emergence of the superparamagnetic limit, below which the random magnetization reversal in particles will frequently occur, and consequently degrade the recorded information. On the other hand, an experimental study showed that the superparamagnetic limit of outofplane magnetized particles is strongly shape dependent, for example, oblong particles switch much more often than compact, almost circular particles of equal volume [9]. The superparamagnetic limit is a key factor in the magnetic recording industry, and it directly determines the maximum achievable recording density. In order to extend the physical understanding of the superparamagnetic limit, it is essential to obtain a complete view of magnetic properties of nanomagnets through theoretical studies as well as experimental investigations [11–13].
In the present work, with the kinetic Monte Carlo method based on the transition state theory we study the dynamic behavior of magnetization reversal in the chainshaped, oblongshaped, and bulkshaped nanomagnets with giant uniaxial anisotropy under the action of an external field at different temperatures. The aim of the work is first to provide a systematic understanding of the influence of shape on the magnetization reversal behavior and second to discuss the changes in coercive field with various spin array patterns of the system. Our study shows that magnetization reversal is much easier to occur in finite chain than in the oblongshaped and bulkshaped systems. This indicates that the magnetization of the elongated particles is more sensitive to the applied field than that of the compact particles. Furthermore, it is found that the coercive field and magnetic order transition temperature in nanomagnets are strongly dependent on the effective coordination number.
2. Model and Method
Consider the nanomagnets of size , where , reduces to a onedimensional magnetic chain, , , indicates a twodimensional oblongshaped system, and , is a threedimensional bulkshaped system while the values of , and are finite. In this paper the uniaxial axis of the system is labelled by the direction and the singleion anisotropy energy has a large value. An external magnetic field is applied along the easy axis. We use a Heisenberg model with an extremely large uniaxial magnetic anisotropy to describe the magnetic properties of the system. The Hamiltonian of the system can be written as where is the normalized spin variable at site . In the first term, the sum runs over all the nearestneighbor spin pairs with being ferromagnetic exchange coupling constant. The second term denotes the uniaxial anisotropy energy with being the singleion anisotropy constant. The last term is the coupling of spin magnetic moment to the applied field , that is, Zeeman energy. The magnetization of the system is defined as , where is the total number of all spin sites and denotes the thermodynamical average.
Owing to the fact that each atom has a large magnetic anisotropy, two metastable states of a spin will prefer to orient along the easy axis. The spin variable can reduce to the , which takes values and −1, corresponding to the spin orientation in and direction, respectively. We use an angle to describe the angular deviation of the spin at site between its current state and its initial state. A transition state begins at and ends at . From the Hamiltonian (1), a nonzero will produce an energy increment where . The energy increment yields a transitionstate barrier, at when [14–16]. The reversal rate of the spin can be expressed as the Arrhenius law [17] , where is Boltzmann constant and is temperature. For , the transition state barriers disappear for some spin reversal processes where we use the Glauber method [18] to treat the exponential factor of the rates, with the prefactor being kept [14]. The expression of the rate implies that our spin processes are thermal activated. This scheme is justified for our simulation because dipolar interactions can be ignored [6, 19] and quantum tunnelling comes into action at very low temperature only [20].
By the kinetic Monte Carlo method, we carry out simulation on the magnetization responses to the applied field for the systems with chain, oblong, and bulk shape. The simulation uses a singlespin flip algorithm under free boundary conditions. Starting from an initial state with all spins , we computed the local field for a randomly chosen spin and flipped the spin state according to the transition rates mentioned above. The spin flip may change the local field of the neighboring spins, thereby affecting the stability of other spins. The local fields of other spins are computed again and another spin is flipped. To reduce error each data point is averaged over at least 500 independent runs.
In our simulation, the exchange interaction between the nearestneighbor spins is taken as meV, and the anisotropy energy is meV/spin. Here, it is worth noting that the experimental studies have revealed that the magnetic anisotropy energy per Co atom can reach 2.0 meV in onedimensional Co chains on Pt(997) surface [21], and the magnetic anisotropy energy per Fe atom is up to 1.6 meV in FePt nanoparticles embedded in Al [22]. The larger the magnetic anisotropy energy, the smaller the critical particle size for stable magnetization at room temperature. So the nanomagnets with a giant magnetic anisotropy energy have been considered as the prime candidate for future data storage media application. The magnetic parameters such as and remain unchanged for all systems unless specified otherwise. The magnetic field sweeping rate is taken as 132 T/s. We sweep the magnetic field, starting from a strong field , at which all spin magnetic moments are aligned along the direction. The field strength is then gradually increased in increments of to , followed by a decrease back to . Thus, a magnetic field sweeping cycle is completed.
3. Results and Discussions
Figure 1 shows the magnetization curves of chainshaped and oblongshaped systems with fixed atoms and varying arrays, that is, , at 10, 16, and 25 K. Clearly, the results from the chain , that is, the mostly inner hysteresis curves, are very different from those of oblongshaped arrays. At a fixed temperature, the magnetization of spin arrays with a larger lengthtowidth ratio, that is, , is more sensitive to the applied field so that the value of the coercive field of elongated arrays is smaller than that of nearly squareshaped arrays. On the other hand, the difference between the magnetization curves for different spin arrays changes with temperature.
(a)
(b)
(c)
In Figure 2, we plot the variation of the coercive field with temperature for spin arrays . It is clear that the crossover temperature for chainshaped arrays is smaller than that of the oblongshaped arrays. The relationship between the coercive field and temperature can be described by a fit function where and represent the coercive field and temperature and , and are fit parameters whose values are shown in Table 1.

In addition, we further study the magnetization reversal properties for nanomagnets of chain shape and oblong shape including 60, 80, and 120 atoms. In Table 2, we give various spin arrays of , 60, 80, and 120 atoms, their lengthtowidth ratio , their coercive fields at K, and standard deviations of the coercive fields. We can see that the coercive fields have a decreasing tendency with increasing for arrays with a fixed width and varying length. This implies that the elongated particles switch more easily than the nearly squareshaped particles, which is in agreement with the results from the literature [9]. Additionally, for the system with a fixed number of total spins, the coercive field of the compactshaped array is large compared with that of the oblongshaped array, but the coercive field exhibits a nonmonotonic increase with decreasing, as shown in Table 2. We think that the slight decrease of the coercive field with should be induced by standard deviations, which are given in Table 2.

In order to gain a systematical understanding of the effects of the shape (or spin array pattern) of nanomagnets on the magnetization reversal, we also study the magnetic properties of bulkshaped systems with various spin arrays . Bringing together the results from the chainshaped, oblongshaped, and bulkshaped systems, we found that at a fixed temperature the coercive field is closely dependent on the shape (or spin array pattern) of the system. The dependence relation can be explained in the following way. For the systems comprising of the same atoms, the transitions both from chain to oblong shape and from oblong to bulk shape lead to an increase in the number of effective nearest neighbors for each spin, which in turn raises the coercive field. Here, the number of effective nearest neighbors per spin, also called the effective coordination number , is defined as twice the ratio of the number of total bonds to the number of total spins in the system. Hence, the values of are not more than 2, 4, and 6 in chainshaped, oblongshaped, and bulkshaped systems. For bulkshaped systems, if we treat those spins having the largest coordination number as the inner spins (or interior atoms) and other spins as outer spins (or surface atoms), is in some sense analogous but inversely proportional to the surfacetovolume ratio of nanomagnets [11]. Taking for example, in Table 3 we display the values of for various spin array patterns corresponding to chainshaped, oblongshaped, and bulkshaped systems.

In Figure 3 we show the coercive field as a function of for bulkshaped arrays of in the cases of meV and meV at 25 K. The anisotropy energy remains unchanged in both cases. From Figure 3 it follows that the coercive field increases with and becomes small for relatively small exchange interaction . The dependence of can be described by the function expression where and represent the fit parameters and is a minus power exponent. We also find that the relation between the coercive field and is also true for those systems with larger anisotropy or smaller exchange coupling. The coercive field increases with increasing the anisotropy energy, but when the anisotropy energy increases to the extent to which the transition between two metastable states involves transition states with barriers only, the influence of on the coercive field becomes small.
For the purpose of comparison, in Figure 4 we display the coercive field as a function of for chainshaped, oblongshaped, and bulkshaped systems containing the same atoms with meV. The solid line is fit to data by (4). The values of correspond to those of Table 3. It can be seen that the coercive field tends to increase with increasing. This indicates that the coercivity or the magnetic order transition temperature of nanomagnets is closely related to the effective coordination number.
For the case of bulkshaped nanomagnets, our simulated results are qualitatively consistent with the experimental ones [10], where the orderdisorder transition temperature of oblong nanoparticles (with 4 and 1.5 nm for the size and the thickness) was found to be lower than that of spherical nanoparticles (with 3 nm for the size). Besides, our results are also in qualitative agreement with the theoretical ones, where the order transition temperature decreases with the increase of surfacetovolume ratio for nanodots, rod, plate, and icosahedra [11].
4. Conclusions
In conclusion, we have investigated the size and shape dependence of magnetic dynamic behaviors in chainshaped, oblongshaped, and bulkshaped nanomagnets. The coercive fields are found to be strongly dependent on the size and shape (or spin array patterns) of the nanomagnets. The magnetization of the elongated array is more sensitive to the applied field than the nearly squareshaped arrays and bulkshaped arrays. We propose that the coercive field is closely associated with the number of effective nearest neighbors for each spin (or effective coordination number), which has different values corresponding to different systems such as chainshaped, oblongshaped, and bulkshaped systems.
Acknowledgments
This work is supported by the Nature Science Foundation of Hebei Province (Grant no. A2010000013) and by the National Natural Science Foundation of China, and by 100 Excellent Innovative Talents Programme of Hebei Province (Grant no. 50901027).
References
 H. N. Bertram, Theory of Magnetic Recording, Cambridge University Press, Cambridge, UK, 1994.
 S. Y. Chou, M. S. Wei, P. R. Krauss, and P. B. Fischer, “Singledomain magnetic pillar array of 35 nm diameter and 65 Gbits/in. 2 density for ultrahigh density quantum magnetic storage,” Journal of Applied Physics, vol. 76, no. 10, pp. 6673–6675, 1994. View at: Publisher Site  Google Scholar
 C. Xu, P. M. Hui, L. F. Zhang, Y.Q. Ma, J. H. Zhou, and Z. Y. Li, “Hysteresis in small arrays of interacting magnetic nanoparticles,” European Physical Journal, vol. 46, no. 4, pp. 475–480, 2005. View at: Publisher Site  Google Scholar
 S. T. Chui, “Shape dependence of the switching field in small structures,” IEEE Transactions on Magnetics, vol. 34, p. 1000, 1998. View at: Google Scholar
 D. Q. Li, B. R. Cuenya, J. Pearson, S. D. Bader, and W. Keune, “Magnetism of stepdecorated Fe on Pd(110),” Physical Review B, vol. 64, no. 14, pp. 1444101–1444105, 2001. View at: Google Scholar
 M. Pratzer and H. J. Elmers, “Domain wall energy in quasionedimensional Fe/W(110) nanostripes,” Physical Review B, vol. 67, no. 9, Article ID 094416, 7 pages, 2003. View at: Google Scholar
 H.B. Braun, “Thermally activated magnetization reversal in elongated ferromagnetic particles,” Physical Review Letters, vol. 71, no. 21, pp. 3557–3560, 1993. View at: Publisher Site  Google Scholar
 E. Y. Vedmedenko, N. Mikuszeit, H. P. Oepen, and R. Wiesendanger, “Multipolar ordering and magnetization reversal in twodimensional nanomagnet arrays,” Physical Review Letters, vol. 95, no. 20, Article ID 207202, pp. 1–4, 2005. View at: Publisher Site  Google Scholar
 M. Bode, O. Pietzsch, A. Kubetzka, and R. Wiesendanger, “Shapedependent thermal switching behavior of superparamagnetic nanoislands,” Physical Review Letters, vol. 92, no. 6, Article ID 067201, 4 pages, 2004. View at: Publisher Site  Google Scholar
 D. Alloyeau, C. Ricolleau, C. Mottet et al., “Size and shape effects on the orderdisorder phase transition in CoPt nanoparticles,” Nature Materials, vol. 8, no. 12, pp. 940–946, 2009. View at: Publisher Site  Google Scholar
 W. H. Zhong, C. Q. Sun, S. Li, H. L. Bai, and E. Y. Jiang, “Impact of bondorder loss on surface and nanosolid magnetism,” Acta Materialia, vol. 53, no. 11, pp. 3207–3214, 2005. View at: Publisher Site  Google Scholar
 V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués, “Beating the superparamagnetic limit with exchange bias,” Nature, vol. 423, no. 6942, pp. 850–853, 2003. View at: Publisher Site  Google Scholar
 J. Y. Yang, K. S. Yoon, Y. H. Do et al., “Magnetic properties of cobalt nanodots fabricated by a new laser irradiation method: anisotropy and superparamagnetism,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3313–3315, 2005. View at: Publisher Site  Google Scholar
 Y. Li and B. G. Liu, “Longrange ferromagnetism in onedimensional monatomic spin chains,” Physical Review B, vol. 73, no. 17, Article ID 174418, 5 pages, 2006. View at: Publisher Site  Google Scholar
 Y. Li and B. G. Liu, “Current controlled spin reversal of nanomagnets with giant uniaxial anisotropy,” Physical Review Letters, vol. 96, no. 21, Article ID 217201, 2006. View at: Publisher Site  Google Scholar
 K. C. Zhang and B. G. Liu, “Dynamical ferromagnetism of interacting tiny magnets with strong anisotropy,” Physics Letters A, vol. 374, no. 1920, pp. 2058–2061, 2010. View at: Publisher Site  Google Scholar
 T. A. Wittern and L. M. Sander, “Diffusionlimited aggregation, a kinetic critical phenomenon,” Physical Review Letters, vol. 47, no. 19, pp. 1400–1403, 1981. View at: Publisher Site  Google Scholar
 R. J. Glauber, “Timedependent statistics of the Ising model,” Journal of Mathematical Physics, vol. 4, no. 2, pp. 294–307, 1963. View at: Google Scholar
 J. Hauschild, H. J. Elmers, and U. Gradmann, “Dipolar superferromagnetism in monolayer nanostripes of Fe(110) on vicinal W(110) surfaces,” Physical Review B, vol. 57, no. 2, pp. R677–R680, 1998. View at: Google Scholar
 W. Wernsdorfer, R. Clerac, C. Coulon, L. Lecren, and H. Miyasaka, “Quantum nucleation in a singlechain magnet,” Physical Review Letters, vol. 95, no. 23, Article ID 237203, 4 pages, 2005. View at: Publisher Site  Google Scholar
 P. Gambardella, A. Dallmeyer, K. Maiti et al., “Ferromagnetism in onedimensional monatomic metal chains,” Nature, vol. 416, no. 6878, pp. 301–304, 2002. View at: Publisher Site  Google Scholar
 C. Antoniak, M. E. Gruner, M. Spasova et al., “A guideline for atomistic design and understanding of ultrahard nanomagnets,” Nature Communications, vol. 2, article 528, 2011. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2012 Ying Li et al. This is an open access article distributed under the Creative Commons Attribution License. which permits unrestricted use. distribution. and reproduction in any medium. provided the original work is properly cited.