Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2012 (2012), Article ID 959578, 7 pages
http://dx.doi.org/10.1155/2012/959578
Research Article

Evaluation of the Morphology and Osteogenic Potential of Titania-Based Electrospun Nanofibers

1Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
2Institute of Sports Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China

Received 8 February 2012; Accepted 3 April 2012

Academic Editor: Krasimir Vasilev

Copyright © 2012 Xiaokun Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Ding, H. Y. Kim, S. C. Lee et al., “Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method,” Journal of Polymer Science, Part B, vol. 40, no. 13, pp. 1261–1268, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim, and S. Ramakrishna, “Crosslinking of the electrospun gelatin nanofibers,” Polymer, vol. 47, no. 8, pp. 2911–2917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. T. Hunley and T. E. Long, “Electrospinning functional nanoscale fibers: a perspective for the future,” Polymer International, vol. 57, no. 3, pp. 385–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Keun Kwon, S. Kidoaki, and T. Matsuda, “Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential,” Biomaterials, vol. 26, no. 18, pp. 3929–3939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, “Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering,” Biomaterials, vol. 26, no. 15, pp. 2603–2610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Li, Y. Wang, and Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays,” Nano Letters, vol. 3, no. 8, pp. 1167–1171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Ramaseshan, S. Sundarrajan, R. Jose, and S. Ramakrishna, “Nanostructured ceramics by electrospinning,” Journal of Applied Physics, vol. 102, no. 11, pp. 1063–1080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Macías, A. Chacko, J. P. Ferraris, and K. J. Balkus Jr., “Electrospun mesoporous metal oxide fibers,” Microporous and Mesoporous Materials, vol. 86, no. 1–3, pp. 1–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano Letters, vol. 2, no. 11, pp. 1273–1275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, vol. 35, no. 2-3, pp. 151–160, 1995. View at Google Scholar · View at Scopus
  11. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, “The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers,” Polymer, vol. 45, no. 9, pp. 2959–2966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent,” Polymer, vol. 46, no. 13, pp. 4799–4810, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan, “Electrospun silk-BMP-2 scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 16, pp. 3115–3124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, “Electrospun nanofibrous structure: a novel scaffold for tissue engineering,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 613–621, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. R. Bhattarai, N. Bhattarai, H. K. Yi, P. H. Hwang, D. I. Cha, and H. Y. Kim, “Novel biodegradable electrospun membrane: scaffold for tissue engineering,” Biomaterials, vol. 25, no. 13, pp. 2595–2602, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, “Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering,” Biomaterials, vol. 29, no. 32, pp. 4314–4322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Ito, H. Hasuda, M. Kamitakahara et al., “A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material,” Journal of Bioscience and Bioengineering, vol. 100, no. 1, pp. 43–49, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sakai, Y. Yamada, T. Yamaguchi, and K. Kawakami, “Prospective use of electrospun ultra-fine silicate fibers for bone tissue engineering,” Biotechnology Journal, vol. 1, no. 9, pp. 958–962, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, and S. Awatsu, “Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process,” Journal of Physical Chemistry B, vol. 107, no. 27, pp. 6586–6589, 2003. View at Google Scholar · View at Scopus
  20. M. F. Morks, “Plasma spraying of zirconia-titania-silica bio-ceramic composite coating for implant application,” Materials Letters, vol. 64, no. 18, pp. 1968–1971, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Leboda, V. V. Turov, M. Marciniak, A. A. Malygin, and A. A. Malkov, “Characteristics of the hydration layer structure in porous titania-silica obtained by the chemical vapor deposition method,” Langmuir, vol. 15, no. 24, pp. 8441–8446, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. T. H. Tran-Thi, R. Dagnelie, S. Crunaire, and L. Nicole, “Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors,” Chemical Society Reviews, vol. 40, no. 2, pp. 621–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. K. M. S. Khalil, A. A. Elsamahy, and M. S. Elanany, “Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra-isopropoxide in sols of spherical silica particles,” Journal of Colloid and Interface Science, vol. 249, no. 2, pp. 359–365, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Zhang, F. Zhang, and K. Y. Chan, “Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties,” Applied Catalysis A, vol. 284, no. 1-2, pp. 193–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Ääritalo, S. Areva, M. Jokinen, M. Lindén, and T. Peltola, “Sol-gel-derived TiO2-SiO2 implant coatings for direct tissue attachment. Part I: design, preparation and characterization,” Journal of Materials Science, vol. 18, no. 9, pp. 1863–1873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. V. V. Meretoja, A. E. De Ruijter, T. O. Peltola, J. A. Jansen, and T. O. Narhi, “Osteoblast differentiation with titania and titania-silica-coated titanium fiber meshes,” Tissue Engineering, vol. 11, no. 9-10, pp. 1489–1497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Muhonen, S. Kujala, A. Vuotikka et al., “Biocompatibility of sol-gel-derived titania-silica coated intramedullary NiTi nails,” Acta Biomaterialia, vol. 5, no. 2, pp. 785–793, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. V. V. Meretoja, T. Tirri, V. Ääritalo, X. F. Walboomers, J. A. Jansen, and T. O. Närhi, “Titania and titania-silica coatings for titanium: comparison of ectopic bone formation within cell-seeded scaffolds,” Tissue Engineering, vol. 13, no. 4, pp. 855–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. J. Yoo and S. H. Rhee, “Evaluations of bioactivity and mechanical properties of poly (ε-caprolactone)/silica nanocomposite following heat treatment,” Journal of Biomedical Materials Research—Part A, vol. 68, no. 3, pp. 401–410, 2004. View at Google Scholar · View at Scopus
  30. X. Wang, R.A. Gittens, R. Song et al., “Effects of structural properties of electrospun TiO2 nanofiber meshes on their osteogenic potential,” Acta Biomaterialia, vol. 8, no. 2, pp. 878–885, 2012. View at Google Scholar
  31. B. Ding, H. Kim, C. Kim, M. Khil, and S. Park, “Morphology and crystalline phase study of electrospun TiO2-SiO2 nanofibres,” Nanotechnology, vol. 14, no. 5, pp. 532–537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Chang, S. K. Kim, H. D. Jang, and S. W. Cho, “Effect of SiO2 nanoparticles on the phase transformation of TiO2 in micron-sized porous TiO2-SiO2 mixed particles,” Materials Letters, vol. 65, no. 21-22, pp. 3272–3274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials, vol. 22, no. 11, pp. 1241–1251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. S. P. Xavier, P. S. P. Carvalho, M. M. Beloti, and A. L. Rosa, “Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments,” Journal of Dentistry, vol. 31, no. 3, pp. 173–180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Fujita, Y. Azuma, R. Fukuyama et al., “Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling,” Journal of Cell Biology, vol. 166, no. 1, pp. 85–95, 2004. View at Publisher · View at Google Scholar · View at Scopus