Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 148578, 12 pages
http://dx.doi.org/10.1155/2013/148578
Review Article

Applications of Nanoparticles for MRI Cancer Diagnosis and Therapy

1Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland
2Department of Clinical Neurosciences, University of Calgary, AB, Canada T2N 4N1
3Department of Chemistry, University of Victoria, Victoria, BC, Canada V8W 3V6
4Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada P7B 6V4
5Department of Oncology, University of Alberta, AB, Canada T6G 1Z2

Received 21 June 2013; Accepted 5 August 2013

Academic Editor: Tifeng Jiao

Copyright © 2013 Barbara Blasiak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” International Journal of Cancer, vol. 120, no. 12, pp. 2527–2537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Weissleder, “Molecular imaging in cancer,” Science, vol. 312, no. 5777, pp. 1168–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Etzioni, N. Urban, S. Ramsey et al., “The case for early detection,” Nature Reviews Cancer, vol. 3, no. 4, pp. 243–252, 2003. View at Google Scholar · View at Scopus
  4. L. M. Parkes, R. Hodgson, L. T. Lu et al., “Cobalt nanoparticles as a novel magnetic resonance contrast agent—relaxivities at 1.5 and 3 Tesla,” Contrast Media and Molecular Imaging, vol. 3, no. 4, pp. 150–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. G. Durán, J. L. Arias, V. Gallardo, and A. V. Delgado, “Magnetic colloids as drug vehicles,” Journal of Pharmaceutical Sciences, vol. 97, no. 8, pp. 2948–2983, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials, vol. 26, no. 18, pp. 3995–4021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Lefebure, E. Dubois, V. Cabuil, S. Neveu, and R. Massart, “Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils,” Journal of Materials Research, vol. 13, no. 10, pp. 2975–2981, 1998. View at Google Scholar · View at Scopus
  8. A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angewandte Chemie, vol. 46, no. 8, pp. 1222–1244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Latorre and C. Rinaldi, “Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia,” Puerto Rico Health Sciences Journal, vol. 28, no. 3, pp. 227–238, 2009. View at Google Scholar · View at Scopus
  10. M. C. Roco, “Nanoscale science and engineering: unifying and transforming tools,” AIChE Journal, vol. 50, no. 5, pp. 890–897, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. D. Meyers, T. Doane, C. Burda, and J. P. Basilion, “Nanoparticles for imaging and treating brain cancer,” Nanomedicine, vol. 8, no. 1, pp. 123–143, 2013. View at Google Scholar
  12. S. S. Kelkar and T. M. Reineke, “Theranostics: combining imaging and therapy,” Bioconjugate Chemistry, vol. 22, no. 10, pp. 1879–1903, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. N. Ramchand, P. Pande, P. Kopcansky, and R. V. Mehta, “Application of magnetic fluids in medicine and biotechnology,” Indian Journal of Pure and Applied Physics, vol. 39, no. 10, pp. 683–686, 2001. View at Google Scholar · View at Scopus
  14. Y.-X. J. Wang, S. M. Hussain, and G. P. Krestin, “Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging,” European Radiology, vol. 11, no. 11, pp. 2319–2331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Taupitz, S. Schmitz, and B. Hamm, “Superparamagnetic iron oxide particles: current state and future development,” RoFo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren, vol. 175, no. 6, pp. 752–765, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Colombo, S. Carregal-Romero, and M. F. Casula, “Biological applications of magnetic nanoparticles,” Chemical Society Reviews, vol. 41, pp. 4306–4334, 2012. View at Google Scholar
  17. O. V. Salata, “Applications of nanoparticles in biology and medicine,” Journal of Nanobiotechnology, vol. 2, article 3, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. E. J. Werner, A. Datta, C. J. Jocher, and K. N. Raymond, “High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging,” Angewandte Chemie, vol. 47, no. 45, pp. 8568–8580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Tomanek, U. Iqbal, B. Blasiak et al., “Evaluation of brain tumor vessels specific contrast agents for glioblastoma imaging,” Neuro-Oncology, vol. 14, no. 1, pp. 53–63, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. U. Iqbal, U. Trojahn, H. Albaghdadi et al., “Kinetic analysis of novel mono- and multivalent VHH-fragments and their application for molecular imaging of brain tumours,” British Journal of Pharmacology, vol. 160, no. 4, pp. 1016–1028, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Firouznia, S. Amirmohseni, M. Guiti et al., “MR relaxivity measurement of iron oxide nano-particles for MR lymphography applications,” Pakistan Journal of Biological Sciences, vol. 11, no. 4, pp. 607–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Lawaczeck, M. Menzel, and H. Pietsch, “Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging,” Applied Organometallic Chemistry, vol. 18, no. 10, pp. 506–513, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. G. Harisinghani, J. Barentsz, P. F. Hahn et al., “Noninvasive detection of clinically occult lymph-node metastases in prostate cancer,” New England Journal of Medicine, vol. 348, no. 25, pp. 2491–2499, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. M. H. F. Meyer, M. Stehr, S. Bhuju et al., “Magnetic biosensor for the detection of Yersinia pestis,” Journal of Microbiological Methods, vol. 68, no. 2, pp. 218–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. E. Kirsch, “Basic principles of magnetic resonance contrast agents,” Topics in Magnetic Resonance Imaging, vol. 3, no. 2, pp. 1–18, 1991. View at Google Scholar · View at Scopus
  26. W. Cai, T. Gao, H. Hong, and J. Sun, “Applications of gold nanoparticles in cancer,” Nanotechnology, Science and Applications, vol. 1, pp. 17–32, 2008. View at Google Scholar
  27. E. Duguet, S. Vasseur, S. Mornet, and J.-M. Devoisselle, “Magnetic nanoparticles and their applications in medicine,” Nanomedicine, vol. 1, no. 2, pp. 157–168, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Sunderland, M. Steiert, J. E. Talmadge, A. M. Derfus, and S. E. Barry, “Targeted nanoparticles for detecting and treating cancer,” Drug Development Research, vol. 67, no. 1, pp. 70–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Wagner, A. Dullaart, A.-K. Bock, and A. Zweck, “The emerging nanomedicine landscape,” Nature Biotechnology, vol. 24, no. 10, pp. 1211–1217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. K. Nune, P. Gunda, P. K. Thallapally, Y.-Y. Lin, M. Laird Forrest, and C. J. Berkland, “Nanoparticles for biomedical imaging,” Expert Opinion on Drug Delivery, vol. 6, no. 11, pp. 1175–1194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Orive, A. R. Gascón, R. M. Hernández, A. Domínguez-Gil, and J. L. Pedraz, “Techniques: new approaches to the delivery of biopharmaceuticals,” Trends in Pharmacological Sciences, vol. 25, no. 7, pp. 382–387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Roco, “Nanotechnology: convergence with modern biology and medicine,” Current Opinion in Biotechnology, vol. 14, no. 3, pp. 337–346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 631–651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. T. M. Fahmy, P. M. Fong, A. Goyal, and W. M. Saltzman, “Targeted for drug delivery,” Materials Today, vol. 8, no. 8, pp. 18–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. M. Fahmy, R. M. Samstein, C. C. Harness, and W. M. Saltzman, “Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting,” Biomaterials, vol. 26, no. 28, pp. 5727–5736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Couvreur, G. Barratt, E. Fattal, P. Legrand, and C. Vauthier, “Nanocapsule technology: a review,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 19, no. 2, pp. 99–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Roger, J. N. Pons, R. Massart, A. Halbreich, and J. C. Bacri, “Some biomedical applications of ferrofluids,” The European Physical Journal Applied Physics, vol. 5, no. 3, pp. 321–325, 1999. View at Google Scholar · View at Scopus
  38. F. Alexis, J.-W. Rhee, J. P. Richie, A. F. Radovic-Moreno, R. Langer, and O. C. Farokhzad, “New frontiers in nanotechnology for cancer treatment,” Urologic Oncology, vol. 26, no. 1, pp. 74–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, “Nanoparticles in medicine: therapeutic applications and developments,” Clinical Pharmacology and Therapeutics, vol. 83, no. 5, pp. 761–769, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol. 5, no. 3, pp. 161–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. D. A. Orringer, Y. E. Koo, T. Chen, R. Kopelman, O. Sagher, and M. A. Philbert, “Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy,” Clinical Pharmacology and Therapeutics, vol. 85, no. 5, pp. 531–535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. A. Anderson, J. Glod, A. S. Arbab et al., “Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model,” Blood, vol. 105, no. 1, pp. 420–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. C. M. Goodman, C. D. McCusker, T. Yilmaz, and V. M. Rotello, “Toxicity of gold nanoparticles functionalized with cationic and anionic side chains,” Bioconjugate Chemistry, vol. 15, no. 4, pp. 897–900, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. T. R. Pisanic II, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones, and S. Jin, “Nanotoxicity of iron oxide nanoparticle internalization in growing neurons,” Biomaterials, vol. 28, no. 16, pp. 2572–2581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Wilhelm, C. Billotey, J. Roger, J. N. Pons, J.-C. Bacri, and F. Gazeau, “Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating,” Biomaterials, vol. 24, no. 6, pp. 1001–1011, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Zhang and J. Zhang, “Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 352–357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J.-S. Kim, T.-J. Yoon, K.-N. Yu et al., “Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells,” Journal of Veterinary Science, vol. 7, no. 4, pp. 321–326, 2006. View at Google Scholar · View at Scopus
  48. S. R. Bhattarai, B. K. Remant, S. Y. Kim et al., “N-hexanoyl chitosan stabilized magnetic nanoparticles: implication for cellular labeling and magnetic resonance imaging,” Journal of Nanobiotechnology, vol. 6, article 1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Tréhin, J.-L. Figueiredo, M. J. Pittet, R. Weissleder, L. Josephson, and U. Mahmood, “Fluorescent nanoparticle uptake for brain tumor visualization,” Neoplasia, vol. 8, no. 4, pp. 302–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. H. Clement, M. Schwalbe, N. Buske et al., “Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells,” Journal of Cancer Research and Clinical Oncology, vol. 132, no. 5, pp. 287–292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. H.-Y. Lee, S.-H. Lee, C. Xu et al., “Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent,” Nanotechnology, vol. 19, no. 16, Article ID 165101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Phanapavudhikul, S. Shen, W. K. Ng, and R. B. H. Tan, “Formulation of Fe3O4/acrylate co-polymer nanocomposites as potential drug carriers,” Drug Delivery, vol. 15, no. 3, pp. 177–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. W. Arap, R. Pasqualini, and E. Ruoslahti, “Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model,” Science, vol. 279, no. 5349, pp. 377–380, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Dagar, M. Sekosan, B. S. Lee, I. Rubinstein, and H. Önyüksel, “VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery,” Journal of Controlled Release, vol. 74, no. 1–3, pp. 129–134, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. B. P. Eliceiri and D. A. Cheresh, “Adhesion events in angiogenesis,” Current Opinion in Cell Biology, vol. 13, no. 5, pp. 563–568, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Ehrhardt, C. Kneuer, and U. Bakowsky, “Selectins—an emerging target for drug delivery,” Advanced Drug Delivery Reviews, vol. 56, no. 4, pp. 527–549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. Y. Cheng, J. D. Meyers, A.-M. Broome, M. E. Kenney, J. P. Basilion, and C. Burda, “Deep penetration of a PDT drug into tumors by noncovalent drug-gold nanoparticle conjugates,” Journal of the American Chemical Society, vol. 133, no. 8, pp. 2583–2591, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Jackson, O. Muhammad, H. Daneshvar et al., “Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas,” Neurosurgery, vol. 60, no. 3, pp. 524–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. W.-H. Ren, J. Chang, C.-H. Yan et al., “Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma,” Journal of Materials Science, vol. 21, no. 9, pp. 2673–2681, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Chang, A. Paillard, C. Passirani et al., “Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells,” Pharmaceutical Research, vol. 29, pp. 1495–1505, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Xie, Y. Zhu, W. Jiang et al., “Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo,” Biomaterials, vol. 32, no. 2, pp. 495–502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Han, A. Zhang, H. Wang, P. Pu, C. Kang, and J. Chang, “Construction of novel brain-targeting gene delivery system by natural magnetic nanoparticles,” Journal of Applied Polymer Science, vol. 121, no. 6, pp. 3446–3454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Gao, J. Qian, S. Cao et al., “Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles,” Biomaterials, vol. 33, no. 20, pp. 5115–5123, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. O. Veiseh, F. M. Kievit, J. W. Gunn, B. D. Ratner, and M. Zhang, “A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells,” Biomaterials, vol. 30, no. 4, pp. 649–657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Sun, O. Veiseh, J. Gunn et al., “In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes,” Small, vol. 4, no. 3, pp. 372–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. O. Veiseh, C. Sun, C. Fang et al., “Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier,” Cancer Research, vol. 69, no. 15, pp. 6200–6207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Kopelman, Y.-E. Lee Koo, M. Philbert et al., “Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer,” Journal of Magnetism and Magnetic Materials, vol. 293, no. 1, pp. 404–410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. G. R. Reddy, M. S. Bhojani, P. McConville et al., “Vascular targeted nanoparticles for imaging and treatment of brain tumors,” Clinical Cancer Research, vol. 12, no. 22, pp. 6677–6686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Xin, X. Jiang, J. Gu et al., “Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma,” Biomaterials, vol. 32, no. 18, pp. 4293–4305, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. O. Veiseh, C. Sun, J. Gunn et al., “Optical and MRI multifunctional nanoprobe for targeting gliomas,” Nano Letters, vol. 5, no. 6, pp. 1003–1008, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. C. K. Kim, P. Ghosh, C. Pagliuca, Z.-J. Zhu, S. Menichetti, and V. M. Rotello, “Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells,” Journal of the American Chemical Society, vol. 131, no. 4, pp. 1360–1361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. H.-L. Liu, M.-Y. Hua, H.-W. Yang et al., “Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 15205–15210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. C. O. Noble, M. T. Krauze, D. C. Drummond et al., “Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy,” Cancer Research, vol. 66, no. 5, pp. 2801–2806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Siegal, A. Horowitz, and A. Gabizon, “Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy,” Journal of Neurosurgery, vol. 83, no. 6, pp. 1029–1037, 1995. View at Google Scholar · View at Scopus
  75. K. Fabel, J. Dietrich, P. Hau et al., “Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin,” Cancer, vol. 92, no. 7, pp. 1936–1942, 2001. View at Google Scholar
  76. Z. Zhang, J. Chen, L. Ding et al., “HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting,” Small, vol. 6, no. 3, pp. 430–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. I. R. Corbin, J. Chen, W. Cao, H. Li, S. Lund-Katz, and G. Zheng, “Enhanced cancer-targeted delivery using engineered high-density lipoprotein-based nanocarriers,” Journal of Biomedical Nanotechnology, vol. 3, no. 4, pp. 367–376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. W. Chen, P. A. Jarzyna, G. A. F. van Tilborg et al., “RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a versatile and multimodal tumor targeting molecular imaging probe,” FASEB Journal, vol. 24, no. 6, pp. 1689–1699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. I. Lynch, K. A. Dawson, and S. Linse, “Detecting cryptic epitopes created by nanoparticles,” Science's STKE, vol. 2006, no. 327, article pe14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. W. M. Pardridge, “CNS drug design based on principles of blood-brain barrier transport,” Journal of Neurochemistry, vol. 70, no. 5, pp. 1781–1792, 1998. View at Google Scholar · View at Scopus
  81. M. Kumar, Z. Medarova, P. Pantazopoulos, G. Dai, and A. Moore, “Novel membrane-permeable contrast agent for brain tumor detection by MRI,” Magnetic Resonance in Medicine, vol. 63, no. 3, pp. 617–624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. F. Kircher, A. de la Zerda, J. V. Jokerst et al., “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nature Medicine, vol. 18, no. 5, pp. 829–834, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Nie, H. J. Hah, G. Kim et al., “Hydrogel nanoparticles with covalently linked coomassie blue for brain tumor delineation visible to the surgeon,” Small, vol. 8, no. 6, pp. 884–891, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. W. M. Pardridge, “Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses,” Bioconjugate Chemistry, vol. 19, no. 7, pp. 1327–1338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Gabathuler, “Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases,” Neurobiology of Disease, vol. 37, no. 1, pp. 48–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. F. Sousa, S. Mandal, C. Garrovo et al., “Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study,” Nanoscale, vol. 2, no. 12, pp. 2826–2834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Y. Wen and S. Kesari, “Malignant gliomas in adults,” New England Journal of Medicine, vol. 359, no. 5, pp. 492–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. N. J. Ullrich and S. L. Pomeroy, “Pediatric brain tumors,” Neurologic Clinics, vol. 21, no. 4, pp. 897–913, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Y. Hernández-Pedro, E. Rangel-López, R. Magaña-Maldonado et al., “Application of nanoparticles on diagnosis and therapy in gliomas,” BioMed Research International, vol. 2013, Article ID 351031, 20 pages, 2013. View at Publisher · View at Google Scholar
  90. C. G. Hadjipanayis, R. Machaidze, M. Kaluzova et al., “EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma,” Cancer Research, vol. 70, no. 15, pp. 6303–6312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. M.-Y. Hua, H.-L. Liu, H.-W. Yang et al., “The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas,” Biomaterials, vol. 32, no. 2, pp. 516–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. P. M. Costa, A. L. Cardoso, L. S. Mendonça, and A. Serani, “Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment,” Molecular Therapy Nucleic Acids, vol. 2, pp. 1–20, 2013. View at Google Scholar
  93. R. Mejías, S. Pérez-Yagüe, A. G. Roca et al., “Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles,” Nanomedicine, vol. 5, no. 3, pp. 397–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. R. C. Mehta, G. B. Pike, S. P. Haros, and D. R. Enzmann, “Central nervous system tumor, infection, and infarction: detection with gadolinium-enhanced magnetization transfer MR imaging,” Radiology, vol. 195, no. 1, pp. 41–46, 1995. View at Google Scholar
  95. F. M. Kievit, O. Veiseh, C. Fang et al., “Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma,” ACS Nano, vol. 4, no. 8, pp. 4587–4594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Y. Park, M. J. Baek, E. S. Choi et al., “Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in Vivo T1 MR images,” ACS Nano, vol. 3, no. 11, pp. 3663–3669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. Cheng, J. D. Meyers, R. S. Agnes et al., “Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery?” Small, vol. 7, no. 16, pp. 2301–2306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Jung, A. Solanki, K. A. Memoli et al., “Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery,” Angewandte Chemie, vol. 49, no. 1, pp. 103–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. S. C. J. Steiniger, J. Kreuter, A. S. Khalansky et al., “Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles,” International Journal of Cancer, vol. 109, no. 5, pp. 759–767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. J. M. Koziara, J. J. Oh, W. S. Akers, S. P. Ferraris, and R. J. Mumper, “Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles,” Pharmaceutical Research, vol. 22, no. 11, pp. 1821–1828, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. W. Lu, Q. Sun, J. Wan, Z. She, and X.-G. Jiang, “Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration,” Cancer Research, vol. 66, no. 24, pp. 11878–11887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Sarin, A. S. Kanevsky, H. Wu et al., “Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells,” Journal of Translational Medicine, vol. 6, article 80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. R. Langer, “Drug delivery and targeting,” Nature, vol. 392, no. 6679, pp. S5–S10, 1998. View at Google Scholar · View at Scopus
  104. V. P. Torchilin, “Multifunctional nanocarriers,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1532–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Terentyuk, G. Akchurin, I. Maksimova, G. Maslyakova, N. Khlebtsov, and V. Tuchin, “Cancer laser thermotherapy mediated by plasmonic nanoparticles,” in Handbook of Photonics for Biomedical Science, pp. 763–797, 2010. View at Google Scholar
  106. K. Maier-Hauff, R. Rothe, R. Scholz et al., “Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme,” Journal of Neuro-Oncology, vol. 81, no. 1, pp. 53–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Jordan, R. Scholz, K. Maier-Hauff et al., “The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma,” Journal of Neuro-Oncology, vol. 78, no. 1, pp. 7–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Barrefelt, M. Saghafian, R. Kuiper R et al., “Biodistribution, kinetics, and biological fate of SPION microbubbles in the rat,” International Journal of Nanomedicine, vol. 8, pp. 3241–3254, 2013. View at Google Scholar
  109. H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Advanced Materials, vol. 21, no. 21, pp. 2133–2148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. V. B. Bregar, J. Lojk, V. Suštar, P. Veranič, and M. Pavlin, “Visualization of internalization of functionalized cobalt ferrite nanoparticles and their intracellular fate,” International Journal of Nanomedicine, vol. 8, pp. 919–931, 2013. View at Google Scholar
  111. C. S. Alexander, “Cobalt-beer cardiomyopathy. A clinical and pathologic study of twenty-eight cases,” The American Journal of Medicine, vol. 53, no. 4, pp. 395–417, 1972. View at Google Scholar · View at Scopus
  112. N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chemical Society Reviews, vol. 40, no. 3, pp. 1647–1671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials, vol. 29, no. 12, pp. 1912–1919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids and Surfaces B, vol. 66, no. 2, pp. 274–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” Journal of Pharmacy and Pharmacology, vol. 60, no. 8, pp. 977–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. X. Qian, X.-H. Peng, D. O. Ansari et al., “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology, vol. 26, no. 1, pp. 83–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307–1315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, “Gold nanoparticles for biology and medicine,” Angewandte Chemie, vol. 49, no. 19, pp. 3280–3294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. X. Yan, J. Blacklock, J. Li, and H. Möhwald, “One-pot synthesis of polypeptide-gold nanoconjugates for in vitro gene transfection,” ACS Nano, vol. 6, no. 1, pp. 111–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. R. Popovtzer, A. Agrawal, N. A. Kotov et al., “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Letters, vol. 8, no. 12, pp. 4593–4596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. L. Faucher, A.-A. Guay-Bégin, J. Lagueux, M.-F. Côté, É. Petitclerc, and M.-A. Fortin, “Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI,” Contrast Media and Molecular Imaging, vol. 6, no. 4, pp. 209–218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chemical Reviews, vol. 112, no. 4, pp. 2373–2433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. R. Güzel, Z. Üstündaĝ, H. Ekşi et al., “Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules,” Journal of Colloid and Interface Science, vol. 351, no. 1, pp. 35–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. F. Bao, J. F. Li, B. Ren, J. Yao, R. Gu, and Z. Tian, “Synthesis and characterization of Au@Co and Au@Ni core-shell nanoparticles and their applications in surface-enhanced Raman spectroscopy,” Journal of Physical Chemistry C, vol. 112, pp. 345–350, 2008. View at Google Scholar
  125. S. Kumar and S. Zou, “Electrooxidation of carbon monoxide and methanol on platinum-overlayer- coated gold nanoparticles: effects of film thickness,” Langmuir, vol. 23, no. 13, pp. 7365–7371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. Chen, B. Zhu, M. Yao, S. Wang, and S. Zhang, “The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation,” Catalysis Communications, vol. 11, no. 12, pp. 1003–1007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. H. Yin, Z. Ma, M. Chi, and S. Dai, “The preparation and characterization of Au@TiO2 nanoparticles and their catalytic activity for CO oxidation,” Catalysis Today, vol. 160, pp. 87–95, 2011. View at Google Scholar
  128. L. Xia, X. Hu, X. Kang, H. Zhao, M. Sun, and X. Cihen, “A one-step facile synthesis of Ag-Ni core-shell nanoparticles in water-in-oil microemulsions,” Colloids and Surfaces A, vol. 367, no. 1–3, pp. 96–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. L. Lu, W. Zhang, D. Wang, X. Xu, J. Miao, and Y. Jiang, “Fe@Ag core-shell nanoparticles with both sensitive plasmonic properties and tunable magnetism,” Materials Letters, vol. 64, pp. 1732–1734, 2010. View at Google Scholar
  130. G. Wang, H. Wu, D. Wexler, H. Liu, and O. Savadogo, “Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction,” Journal of Alloys and Compounds, vol. 503, no. 1, pp. L1–L14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. W. R. Lee, M. Kim, and J. Choi, “Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles,” Journal of Analytical and Applied Chemistry, vol. 127, pp. 16090–16097, 2005. View at Google Scholar
  132. X.-B. Zhang, J.-M. Yan, S. Han, H. Shioyama, and Q. Xu, “Magnetically recyclable Fe@Pt core-shell nanoparticles and their use aselectrocatalysts for ammonia borane oxidation: the role of crystallinity of thecore,” Journal of the American Chemical Society, vol. 131, no. 8, pp. 2778–2779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. J. W. Stouwdam and F. C. J. M. van Veggel, “Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification,” Langmuir, vol. 20, no. 26, pp. 11763–11771, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, and H. Zhang, “Upconversion luminescence of β-NaYF4: Yb3+, Er3+β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence,” Journal of Physical Chemistry C, vol. 113, no. 17, pp. 7164–7169, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. Scott Prosser, and F. C. J. M. van Veggel, “Size-tunable, ultrasmall NaGdF4 nanoparticles: insights into their T1 MRI contrast enhancement,” Chemistry of Materials, vol. 23, no. 16, pp. 3714–3722, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. G. K. Das, N. J. J. Johnson, J. Cramen et al., “NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging,” Journal of Physical Chemistry Letters, vol. 3, no. 4, pp. 524–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. C. Dong, A. Korinek, B. Blasiak, B. Tomanek, and F. C. J. M. van Veggel, “Cation exchange: a facile method to make NaYF4:Yb,Tm-NaGdF4 core-shell nanoparticles with a thin, tunable, and uniform shell,” Chemistry of Materials, vol. 27, no. 4, pp. 1297–1305, 2012. View at Google Scholar
  138. Y. Y. Wang, K. F. Cai, and X. Yao, “Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature,” Journal of Solid State Chemistry, vol. 182, no. 12, pp. 3383–3386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. S.-H. Yoo, L. Liu, and S. Park, “Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis,” Journal of Colloid and Interface Science, vol. 339, no. 1, pp. 183–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. M. A. López-Quintela and J. Rivas, “Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles,” Journal of Colloid and Interface Science, vol. 158, no. 2, pp. 446–451, 1993. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Mandal, S. Kundu, S. K. Ghosh et al., “Magnetite nanoparticles with tunable gold or silver shell,” Journal of Colloid and Interface Science, vol. 286, no. 1, pp. 187–194, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Mandal, S. Kundu, T. K. Sau, S. M. Yusuf, and T. Pal, “Synthesis and characterization of superparamagnetic Ni-Pt nanoalloy,” Chemistry of Materials, vol. 15, no. 19, pp. 3710–3715, 2003. View at Publisher · View at Google Scholar · View at Scopus
  143. X. Yan, J. Li, and H. Mohwald, “Templating assembly of multifunctional hybrid colloidal spheres,” Advanced Materials, vol. 24, pp. 2663–2667, 2012. View at Google Scholar
  144. X. Yan, P. Zhu, J. Fei, and J. Li, “Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests,” Advanced Materials, vol. 22, no. 11, pp. 1283–1287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4212–4217, 1999. View at Google Scholar · View at Scopus
  146. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chemistry of Materials, vol. 15, no. 10, pp. 1957–1962, 2003. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Johnson and F. C. J. M. van Veggel, “Sodium lanthanide fluoride core-shell nanocrystals: a general perspective on epitaxial shell growth,” Nano Research, 2013. View at Google Scholar
  148. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chemical Society Reviews, vol. 41, no. 3, pp. 1323–1349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Shen, L.-D. Sun, and C.-H. Yan, “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Transactions, no. 42, pp. 5687–5697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. X. Zhu, J. Zhou, M. Chen, M. Shi, W. Feng, and F. Li, “Core-shell Fe3O4@NaLuF4: Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging,” Biomaterials, vol. 33, no. 18, pp. 4618–4627, 2012. View at Publisher · View at Google Scholar · View at Scopus
  151. F. Wang, Y. Han, C. S. Lim et al., “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature, vol. 463, no. 7284, pp. 1061–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Wu, G. Han, D. J. Milliron et al., “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 10917–10921, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. M. Nyk, R. Kumar, T. Y. Ohulchanskyy, E. J. Bergey, and P. N. Prasad, “High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors,” Nano Letters, vol. 8, no. 11, pp. 3834–3838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. Q. Liu, Y. Sun, T. Yang, W. Feng, C. Li, and F. Li, “Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo,” Journal of the American Chemical Society, vol. 133, no. 43, pp. 17122–17125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, and F. Li, “Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties,” Biomaterials, vol. 31, no. 12, pp. 3287–3295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Shen, L.-D. Sun, Y.-W. Zhang, and C.-H. Yan, “Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb,Er hetero-nanoparticles via a crosslinker anchoring strategy,” Chemical Communications, vol. 46, no. 31, pp. 5731–5733, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. L. Cheng, K. Yang, Y. Li et al., “Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy,” Angewandte Chemie, vol. 50, no. 32, pp. 7385–7390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. A. Xia, Y. Gao, J. Zhou et al., “Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node,” Biomaterials, vol. 32, no. 29, pp. 7200–7208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. T. Yang, Y. Sun, Q. Liu, W. Feng, P. Yang, and F. Li, “Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species,” Biomaterials, vol. 33, no. 14, pp. 3733–3742, 2012. View at Publisher · View at Google Scholar · View at Scopus
  160. S. E. McNeil, “Nanotechnology for the biologist,” Journal of Leukocyte Biology, vol. 78, no. 3, pp. 585–594, 2005. View at Publisher · View at Google Scholar · View at Scopus