Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 172504, 6 pages
http://dx.doi.org/10.1155/2013/172504
Research Article

Effect of Surfactant Concentration Variation on the Thermoelectric Properties of Mesoporous ZnO

1Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
2School of Mechanical Engineering, Yonsei University, Seoul 120-749, Republic of Korea
3Korea Institute of Ceramic Engineering and Technology, Seoul 153-801, Republic of Korea
4Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA

Received 7 May 2013; Revised 10 August 2013; Accepted 22 August 2013

Academic Editor: Jin-Sang Kim

Copyright © 2013 Min-Hee Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Physical Review B, vol. 47, no. 19, pp. 12727–12731, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. G. J. D. A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures,” Chemical Reviews, vol. 102, no. 11, pp. 4093–4138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Zhang, C. S. Dandeneau, X. Zhou, and C. Cao, “ZnO nanostructures for dye-sensitized solar cells,” Advanced Materials, vol. 21, no. 41, pp. 4087–4108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Ra, K. Choi, J. Kim, Y. Hahn, and Y. Im, “Fabrication of ZnO nanowires using nanoscale spacer lithography for gas sensors,” Small, vol. 4, no. 8, pp. 1105–1109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Znaidi, G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez, and A. V. Kanaev, “Oriented ZnO thin films synthesis by sol-gel process for laser application,” Thin Solid Films, vol. 428, no. 1-2, pp. 257–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Natsume and H. Sakata, “Zinc oxide films prepared by sol-gel spin-coating,” Thin Solid Films, vol. 372, no. 1, pp. 30–36, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Smirnov, C. Baban, and G. I. Rusu, “Structural and optical characteristics of spin-coated ZnO thin films,” Applied Surface Science, vol. 256, no. 8, pp. 2405–2408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Sahoo, M. Kim, M. Lee et al., “Nanocrystalline ZnO thin films by spin coating-pyrolysis method,” Journal of Alloys and Compounds, vol. 491, no. 1-2, pp. 308–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zi-qiang, D. Hong, L. Yan, and C. Hang, “Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films,” Materials Science in Semiconductor Processing, vol. 9, no. 1–3, pp. 132–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. G. J. D. A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures,” Chemical Reviews, vol. 102, no. 11, pp. 4093–4138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chemistry of Materials, vol. 11, no. 10, pp. 2813–2826, 1999. View at Google Scholar · View at Scopus
  12. C. J. Brinker, Y. Lu, A. Sellinger, and H. Fan, “Evaporation-induced self-assembly: nanostructures made easy,” Advanced Materials, vol. 11, no. 7, pp. 579–585, 1999. View at Google Scholar
  13. D. Grosso, F. Cagnol, G. J. D. A. A. Soler-Illia et al., “Fundamentals of mesostructuring through evaporation-induced self-assembly,” Advanced Functional Materials, vol. 14, no. 4, pp. 309–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, “Determination of pore size distribution in thin films by ellipsometric porosimetry,” Journal of Vacuum Science and Technology B, vol. 18, no. 3, pp. 1385–1391, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Tsui, C. Yang, and K. Fang, “Anisotropic thermal conductivity of nanoporous silica film,” IEEE Transactions on Electron Devices, vol. 51, no. 1, pp. 20–27, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, New York, NY, USA, 1995.