Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 237439, 6 pages
Research Article

Shape Effects of Iron Nanowires on Hyperthermia Treatment

1Department of Materials Engineering, Tatung University, Taipei 104, Taiwan
2Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
3Department of Chemical Engineering, Tatung University, Taipei 104, Taiwan

Received 7 October 2012; Accepted 12 May 2013

Academic Editor: Haiping Hong

Copyright © 2013 Wei-Syuan Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This research discusses the influence of morphology of nanomagnetic materials (one-dimensional iron nanowires and zero-dimensional iron nanoparticles) on heating efficiency of the hyperthermia treatment. One-dimensional iron nanowires, synthesized by reducing method in external magnetic field, are explored in terms of their material properties, magnetic anisotropy, and cytotoxicity of EMT-6 cells. The magnetic anisotropy of an array of nanowires is examined in parallel and perpendicular magnetic fields by VSM. For the magnetic hyperthermia treatment tests, iron nanowires and nanoparticles with different concentrations are heated in alternating magnetic field to measure their actual heating efficiency and SLP heating properties. The shape effects of iron nanomaterials can be revealed from their heating properties. The cytotoxicity of nanowires with different concentrations is measured by its survival rate in EMT-6 with the cells cultivated for 6 and 24 hours.