Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 238351, 11 pages
http://dx.doi.org/10.1155/2013/238351
Research Article

Cationic Gelatin Nanoparticles for Drug Delivery to the Ocular Surface: In Vitro and In Vivo Evaluation

1Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei City 110, Taiwan
2Division of Medical Engineering Research, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
3Department of Ophthalmology, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Beitou District, Taipei City 112, Taiwan
4National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei City 112, Taiwan
5Institute of Biomedical Engineering, National Taiwan University, No. 1, Section 1, Ren-ai Road, Taipei City 100, Taiwan
6Institute of Biomedical Engineering and Material Science, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Taichung City 406, Taiwan
7Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei City 110, Taiwan

Received 2 August 2013; Revised 12 November 2013; Accepted 25 November 2013

Academic Editor: Anchal Srivastava

Copyright © 2013 Ching-Li Tseng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. P. Torchilin and V. S. Trubetskoy, “Which polymers can make nanoparticulate drug carriers long-circulating?” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 141–155, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. E. E. Binstock and A. J. Domb, “Nanoparticles in locular drug delivery,” in Nanoparticles for Pharmaceutical Applications, A. J. Domb, Y. Tabata, M. N. V. R. Kumar, and S. Farber, Eds., pp. 367–376, American Scientific Publishers, Valencia, Calif, USA, 2007. View at Google Scholar
  3. N. M. Davies, “Biopharmaceutical considerations in topical ocular drug delivery,” Clinical and Experimental Pharmacology and Physiology, vol. 27, no. 7, pp. 558–562, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Diebold, M. Jarrín, V. Sáez et al., “Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP),” Biomaterials, vol. 28, no. 8, pp. 1553–1564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. de Campos, A. Sánchez, and M. J. Alonso, “Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A,” International Journal of Pharmaceutics, vol. 224, no. 1-2, pp. 159–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-L. Bourges, S. E. Gautier, F. Delie et al., “Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles,” Investigative Ophthalmology & Visual Science, vol. 44, no. 8, pp. 3562–3569, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. de la Fuente, B. Seijo, and M. J. Alonso, “Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy,” Investigative Ophthalmology & Visual Science, vol. 49, no. 5, pp. 2016–2024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Başaran, M. Demirel, B. Sirmagül, and Y. Yazan, “Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery,” Journal of Microencapsulation, vol. 27, no. 1, pp. 37–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Kawashima, H. Yamamoto, H. Takeuchi, and Y. Kuno, “Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin,” Pharmaceutical Development and Technology, vol. 5, no. 1, pp. 77–85, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. E. H. Gökçe, G. Sandri, S. Eǧrilmez, M. C. Bonferoni, T. Güneri, and C. Caramella, “Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes,” Current Eye Research, vol. 34, no. 11, pp. 996–1003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. B. Djagny, Z. Wang, and S. Xu, “Gelatin: a valuable protein for food and pharmaceutical industries: review,” Critical Reviews in Food Science and Nutrition, vol. 41, no. 6, pp. 481–492, 2001. View at Google Scholar · View at Scopus
  12. M. B. Sintzel, S. F. Bernatchez, C. Tabatabay, and R. Gurny, “Biomaterials in ophthalmic drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 42, no. 6, pp. 358–374, 1996. View at Google Scholar · View at Scopus
  13. J. O.-H. Sham, Y. Zhang, W. H. Finlay, W. H. Roa, and R. Löbenberg, “Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung,” International Journal of Pharmaceutics, vol. 269, no. 2, pp. 457–467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Kaul and M. Amiji, “Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies,” Pharmaceutical Research, vol. 22, no. 6, pp. 951–961, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Gupta, M. Gupta, S. J. Yarwood, and A. S. G. Curtis, “Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts,” Journal of Controlled Release, vol. 95, no. 2, pp. 197–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. C.-L. Tseng, W.-Y. Su, K.-C. Yen, K.-C. Yang, and F.-H. Lin, “The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation,” Biomaterials, vol. 30, no. 20, pp. 3476–3485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Vandervoort and A. Ludwig, “Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 2, pp. 251–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. G. K. Zorzi, L. Contreras-Ruiz, J. E. Párraga et al., “Expression of MUC5AC in ocular surface epithelial cells using cationized gelatin nanoparticles,” Molecular Pharmaceutics, vol. 8, no. 5, pp. 1783–1788, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. C. Nagarwal, S. Kant, P. N. Singh, P. Maiti, and J. K. Pandit, “Polymeric nanoparticulate system: a potential approach for ocular drug delivery,” Journal of Controlled Release, vol. 136, no. 1, pp. 2–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. J. Coester, K. Langer, H. Von Briesen, and J. Kreuter, “Gelatin nanoparticles by two step desolvation–a new preparation method, surface modifications and cell uptake,” Journal of Microencapsulation, vol. 17, no. 2, pp. 187–193, 2000. View at Google Scholar · View at Scopus
  21. C.-L. Tseng and F.-H. Lin, “Preparation of gelatin nanoparticles with EGFR selection ability via biotinylated-EGF conjugation for lung cancer targeting,” Biomedical Engineering: Applications, Basis and Communications, vol. 20, no. 3, pp. 161–169, 2008. View at Google Scholar · View at Scopus
  22. J. Smith, E. Wood, and M. Dornish, “Effect of chitosan on epithelial cell tight junctions,” Pharmaceutical Research, vol. 21, no. 1, pp. 43–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. Test Guideline 405: Acute Eye Irritation/Corrosion, Organization for Economic Co-Operation and Development, 2002.
  24. J.-Y. Lai, “Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 6, pp. 1899–1911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. M. Hsu, K. H. Chen, J. Y. Lai, and G. Hsiue, “Transplantation of human corneal endothelial cells using functional biomaterials: poly(N-isopropylacrylamide) and gelatin,” Journal of Experimental & Clinical Medicine, vol. 5, no. 2, pp. 56–64, 2013. View at Google Scholar
  26. P. van der Bijl, A. H. Engelbrecht, A. D. van Eyk, and D. Meyer, “Comparative permeability of human and rabbit corneas to cyclosporin and tritiated water,” Journal of Ocular Pharmacology and Therapeutics, vol. 18, no. 5, pp. 419–427, 2002. View at Google Scholar · View at Scopus
  27. S. Young, M. Wong, Y. Tabata, and A. G. Mikos, “Gelatin as a delivery vehicle for the controlled release of bioactive molecules,” Journal of Controlled Release, vol. 109, no. 1–3, pp. 256–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. de Campos, Y. Diebold, E. L. S. Carvalho, A. Sánchez, and M. J. Alonso, “Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity,” Pharmaceutical Research, vol. 21, no. 5, pp. 803–810, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. E. de Salamanca, Y. Diebold, M. Calonge et al., “Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance,” Investigative Ophthalmology & Visual Science, vol. 47, no. 4, pp. 1416–1425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. de Campos, A. Sánchez, R. Gref, P. Calvo, and M. J. Alonso, “The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa,” European Journal of Pharmaceutical Sciences, vol. 20, no. 1, pp. 73–81, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Mannermaa, K.-S. Vellonen, and A. Urtti, “Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics,” Advanced Drug Delivery Reviews, vol. 58, no. 11, pp. 1136–1163, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Rabinovich-Guilatt, P. Couvreur, G. Lambert, and C. Dubernet, “Cationic vectors in ocular drug delivery,” Journal of Drug Targeting, vol. 12, no. 9-10, pp. 623–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. M. Hutak and R. B. Jacaruso, “Evaluation of primary ocular irritation: alternatives to the Draize test,” in Ocular Therapeutics and Drug Delivery, R. Ik, Ed., Technomic Publishing, Lancaster, Pa, USA, 1996. View at Google Scholar
  34. L. Guo, S. E. Moss, R. A. Alexander, R. R. Ali, F. W. Fitzke, and M. F. Cordeiro, “Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix,” Investigative Ophthalmology & Visual Science, vol. 46, no. 1, pp. 175–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Yenice, M. C. Mocan, E. Palaska et al., “Hyaluronic acid coated poly-ε-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea,” Experimental Eye Research, vol. 87, no. 3, pp. 162–167, 2008. View at Publisher · View at Google Scholar · View at Scopus