Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 245095, 8 pages
http://dx.doi.org/10.1155/2013/245095
Research Article

The Liquid Sensor Using Thin Film Bulk Acoustic Resonator with C-Axis Tilted AlN Films

1Department of Electrical Engineering, National Sun Yat-Sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan
2Department of Computer and Communication, Shu-Te University, No. 59, Hengshan Road, Yanchao District, Kaohsiung 82445, Taiwan
3Department of Electronic Engineering, De Lin Institute of Technology, No. 1, Ln. 380, Qingyun Road, Tucheng District, New Taipei 23654, Taiwan

Received 15 September 2013; Accepted 1 October 2013

Academic Editor: Liang-Wen Ji

Copyright © 2013 Ying-Chung Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C.-L. Wei, Y.-C. Chen, J.-L. Fu, K.-S. Kao, D.-L. Cheng, and C.-C. Cheng, “UV detection based on a ZnO/LiNbO3 layered surface acoustic wave oscillator circuit,” Journal of Vacuum Science and Technology A, vol. 27, no. 6, pp. 1343–1346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R.-C. Lin, Y.-C. Chen, W.-T. Chang, C.-C. Cheng, and K.-S. Kao, “Highly sensitive mass sensor using film bulk acoustic resonator,” Sensors and Actuators A, vol. 147, no. 2, pp. 425–429, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. I.-Y. Huang and M.-C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sensors and Actuators B, vol. 132, no. 1, pp. 340–348, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Ruby, P. Bradley, Y. Oshmyansky, and A. Chien, “Thin film bulk wave acoustic resonators (FBAR) for wireless applications,” in Proceedings of the IEEE Ultasonics Symposium, pp. 813–821, October 2001. View at Scopus
  5. J. D. Larson, R. C. Ruby, P. D. Bradley, J. Wen, S.-L. Kok, and A. Chien, “Power handling and temperature coefficient studies in FBAR duplexers for the 1900 MHz PCS band,” in Proceedings of the IEEE Ultasonics Symposium, pp. 869–874, October 2000. View at Scopus
  6. K. M. Lakin, K. T. McCarron, J. Belsick, and R. Rose, “Filter banks implemented with integrated thin film resonators,” in Proceedings of the IEEE Ultasonics Symposium, pp. 851–854, October 2000. View at Scopus
  7. K. M. Lakin, “Thin film resonator technology,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 5, pp. 707–716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Q.-X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, “Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 4, pp. 769–778, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. R.-C. Lin, K.-S. Kao, C.-C. Cheng, and Y.-C. Chen, “Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device,” Thin Solid Films, vol. 516, no. 16, pp. 5262–5265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R.-C. Lin, Y.-C. Chen, and K.-S. Kao, “Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators,” Applied Physics A, vol. 89, no. 2, pp. 475–479, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C.-J. Chung, Y.-C. Chen, C.-C. Cheng, and K.-S. Kao, “An improvement of tilted AlN for shear and longitudinal acoustic wave,” Applied Physics A, vol. 94, no. 2, pp. 307–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C.-L. Wei, Y.-C. Chen, S.-R. Li, C.-C. Cheng, K.-S. Kao, and C.-J. Chung, “Effects of reflecting layers on resonance characteristics of a solidly mounted resonator with (1/4)λ mode configuration,” Applied Physics A, vol. 99, no. 1, pp. 271–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. European Union, Waste Electrical and Electronic Equipment [WEEE] Regulations, EU-Directive 96/EC, 2002.
  14. European Union, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment [ROHS] Regulations, EU-Directive 95/EC, 2002.
  15. H. Zhang and E. S. Kim, “Micromachined acoustic resonant mass sensor,” Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 699–706, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Minakata, N. Chubachi, and Y. Kikuchi, “Variation of c-axis orientation of ZnO thin films deposited by DC diode sputtering,” Japanese Journal of Applied Physics, vol. 12, no. 3, pp. 474–475, 1973. View at Google Scholar · View at Scopus
  17. F. Martin, M.-E. Jan, S. Rey-Mermet et al., “Shear mode coupling and tilted grain growth of AlN thin films in BAW resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 7, pp. 1339–1343, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Link, M. Schreiter, J. Weber et al., “C-axis inclined ZnO films deposited by reactive sputtering using an additional blind for shear BAW devices,” in Proceedings of the IEEE Ultrasonics Symposium, vol. 1, pp. 202–205, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. S. Wang, K. M. Lakin, and A. R. Landin, “Sputtered c-axis inclined piezoelectric film and shear wave resonators,” in Proceedings of the 37th IEEE Frequency Control Symposium, pp. 144–146, Philadelphia, Pa, USA, 1983.
  20. J. Weber, W. M. Albers, J. Tuppurainen et al., “Shear mode FBARs as highly sensitive liquid biosensors,” Sensors and Actuators A, vol. 128, no. 1, pp. 84–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Link, J. Weber, M. Schreiter, W. Wersing, O. Elmazria, and P. Alnot, “Sensing characteristics of high-frequency shear mode resonators in glycerol solutions,” Sensors and Actuators B, vol. 121, no. 2, pp. 372–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Wingqvist, J. Bjurström, L. Liljeholm, V. Yantchev, and I. Katardjiev, “Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media,” Sensors and Actuators B, vol. 123, no. 1, pp. 466–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Wingqvist, “AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—a review,” Surface and Coatings Technology, vol. 205, no. 5, pp. 1279–1286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Wingqvist, H. Anderson, C. Lennartsson, T. Weissbach, V. Yantchev, and A. L. Spetz, “On the applicability of high frequency acoustic shear mode biosensing in view of thickness limitations set by the film resonance,” Biosensors and Bioelectronics, vol. 24, no. 11, pp. 3387–3390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, and T. Yamada, “Influence of metal electrodes on crystal orientation of aluminum nitride thin films,” Vacuum, vol. 74, no. 3-4, pp. 699–703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectronics Journal, vol. 37, no. 6, pp. 519–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. C. M. Horowitz, R. A. Monetti, and E. V. Albano, “Competitive growth model involving random deposition and random deposition with surface relaxation,” Physical Review E, vol. 63, no. 6, Article ID 066132, 2001. View at Google Scholar · View at Scopus
  28. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science and Technology A, vol. 21, pp. S117–S128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Qin, Q. Chen, H. Cheng, and Q.-M. Wang, “Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 8, pp. 1840–1853, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Sauerbrey, “Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung,” Zeitschrift für Physik, vol. 155, pp. 206–222, 1959. View at Google Scholar
  31. J. Bjurström, D. Rosén, I. Katardjiev, V. M. Yanchev, and I. Petrov, “Dependence of the electromechanical coupling on the degree of orientation of c-textured thin AlN films,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, no. 10, pp. 1347–1353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. C.-L. Wei, Y.-C. Chen, C.-C. Cheng, and K.-S. Kao, “Solidly mounted resonators consisting of a molybdenum and titanium Bragg reflector,” Applied Physics A, vol. 90, no. 3, pp. 501–506, 2008. View at Publisher · View at Google Scholar · View at Scopus