Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 289256, 8 pages
Research Article

One-Step Fabrication of Hierarchically Structured Silicon Surfaces and Modification of Their Morphologies Using Sacrificial Layers

1Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
2Department of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
3Department of Emergency Medicine, Soon Chun Hyang University Hospital, Bucheon 420-767, Republic of Korea

Received 3 December 2012; Revised 29 May 2013; Accepted 8 June 2013

Academic Editor: Jian Wei

Copyright © 2013 Seong J. Cho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fabrication of one-dimensional nanostructures is a key issue for optical devices, fluidic devices, and solar cells because of their unique functionalities such as antireflection and superhydrophobicity. Here, we report a novel one-step process to fabricate patternable hierarchical structures consisting of microstructures and one-dimensional nanostructures using a sacrificial layer. The layer plays a role as not only a micromask for producing microstructures but also as a nanomask for nanostructures according to the etching time. Using this method, we fabricated patterned hierarchical structures, with the ability to control the shape and density of the nanostructure. The various architectures provided unique functionalities. For example, our sacrificial-layer etching method allowed nanostructures denser than what would be attainable with conventional processes to form. The dense nanostructure resulted in a very low reflectance of the silicon surface (less than 1%). The nanostructured surface and hierarchically structured surface also exhibited excellent antiwetting properties, with a high contact angle (>165°) and low sliding angle (<1°). We believe that our fabrication approach will provide new insight into functional surfaces, such as those used for antiwetting and antireflection surface applications.