Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 313081, 10 pages
http://dx.doi.org/10.1155/2013/313081
Research Article

Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids

1Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
2Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz, Poland

Received 15 April 2013; Revised 17 June 2013; Accepted 18 June 2013

Academic Editor: William W. Yu

Copyright © 2013 Emilia Tomaszewska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chemical Society Reviews, vol. 38, no. 6, pp. 1759–1782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O'Regan, “Emerging use of nanoparticles in diagnosis and treatment of breast cancer,” The Lancet Oncology, vol. 7, no. 8, pp. 657–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science, vol. 297, no. 5586, pp. 1536–1540, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. B. Falabella, T. J. Cho, D. C. Ripple, V. A. Hackley, and M. J. Tarlov, “Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering,” Langmuir, vol. 26, no. 15, pp. 12740–12747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Li and L. Rothberg, “Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 39, pp. 14036–14039, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins,” Science, vol. 301, no. 5641, pp. 1884–1886, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science, vol. 289, no. 5485, pp. 1757–1760, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. D. J. Gorth, D. M. Rand, and T. J. Webster, “Silver nanoparticle toxicity in Drosophila: size does matter,” International Journal of Nanomedicine, vol. 6, pp. 343–350, 2011. View at Google Scholar · View at Scopus
  9. M. Korani, S. M. Rezayat, K. Gilani, S. Arbabi Bidgoli, and S. Adeli, “Acute and subchronic dermal toxicity of nanosilver in guinea pig,” International Journal of Nanomedicine, vol. 6, pp. 855–862, 2011. View at Google Scholar · View at Scopus
  10. H. J. Johnston, G. Hutchison, F. M. Christensen, S. Peters, S. Hankin, and V. Stone, “A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity,” Critical Reviews in Toxicology, vol. 40, no. 4, pp. 328–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. M. Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, “Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications,” Polymer, vol. 48, no. 1, pp. 158–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, “Plasmonic materials for surface-enhanced sensing and spectroscopy,” MRS Bulletin, vol. 30, no. 5, pp. 368–375, 2005. View at Google Scholar · View at Scopus
  13. G.-N. Xiao and S.-Q. Man, “Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles,” Chemical Physics Letters, vol. 447, no. 4–6, pp. 305–309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Yamaguchi, T. Kaya, and H. Takei, “Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects,” Analytical Biochemistry, vol. 364, no. 2, pp. 171–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. O. V. Salata, “Applications of nanoparticles in biology and medicine,” Journal of Nanobiotechnology, vol. 2, article 3, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Zook, V. Rastogi, R. I. MacCuspie, A. M. Keene, and J. Fagan, “Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation,” ACS Nano, vol. 5, no. 10, pp. 8070–8079, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4212–4217, 1999. View at Google Scholar · View at Scopus
  18. M. Hu, J. Chen, Z.-Y. Li et al., “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chemical Society Reviews, vol. 35, no. 11, pp. 1084–1094, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Piwonski, K. Soliwoda, A. Kisielewska, K. Kadziola, and R. Stanecka-Badura, “The effect of the surface nanostructure and composition on the antiwear properties of zirconia-titania coatings,” Ceramics International, vol. 39, no. 2, pp. 1111–1123, 2013. View at Publisher · View at Google Scholar
  20. R. D. Boyd and A. Cuenat, “New analysis procedure for fast and reliable size measurement of nanoparticles from atomic force microscopy images,” Journal of Nanoparticle Research, vol. 13, no. 1, pp. 105–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Cichomski, E. Tomaszewska, K. Kośla, W. Kozłowski, P. J. Kowalczyk, and J. Grobelny, “Study of dithiol monolayer as the interface for controlled deposition of gold nanoparticles,” Materials Characterization, vol. 62, no. 3, pp. 268–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. K. Brar and M. Verma, “Measurement of nanoparticles by light-scattering techniques,” Trends in Analytical Chemistry, vol. 30, no. 1, pp. 4–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. N. Khlebtsov and N. G. Khlebtsov, “On the measurement of gold nanoparticle sizes by the dynamic light scattering method,” Colloid Journal, vol. 73, no. 1, pp. 118–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Dieckmann, H. Cölfen, H. Hofmann, and A. Petri-Fink, “Particle size distribution measurements of manganese-doped ZnS nanoparticles,” Analytical Chemistry, vol. 81, no. 10, pp. 3889–3895, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Grobelny, F. W. Delrio, N. Pradeep, D. Kim -I, V. A. Hackley, and R. F. Cook, “Size measurement of nanoparticles using atomic force microscopy,” in Characterization of Nanoparticles Intended for Drug Delivery, S. E. McNeil, Ed., vol. 697 of Methods in Molecular Biology, pp. 71–82, Springer, 2011. View at Publisher · View at Google Scholar
  26. H. X. He, H. Zhang, Q. G. Li, T. Zhu, S. F. Y. Li, and Z. F. Liu, “Fabrication of designed architectures of Au nanoparticles on solid substrate with printed self-assembled monolayers as templates,” Langmuir, vol. 16, no. 8, pp. 3846–3851, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Pethkar, M. Aslam, I. S. Mulla, P. Ganeshan, and K. Vijayamohanan, “Preparation and characterisation of silver quantum dot superlattice using self-assembled monolayers of pentanedithiol,” Journal of Materials Chemistry, vol. 11, no. 6, pp. 1710–1714, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Jans, X. Liu, L. Austin, G. Maes, and Q. Huo, “Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies,” Analytical Chemistry, vol. 81, no. 22, pp. 9425–9432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. G. Zanetti-Ramos, M. B. Fritzen-Garcia, C. S. de Oliveira et al., “Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles,” Materials Science and Engineering C, vol. 29, no. 2, pp. 638–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Zimbone, L. Calcagno, G. Messina, P. Baeri, and G. Compagnini, “Dynamic light scattering and UV-vis spectroscopy of gold nanoparticles solution,” Materials Letters, vol. 65, no. 19-20, pp. 2906–2909, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. K. Bhui, H. Bar, P. Sarkar, G. P. Sahoo, S. P. De, and A. Misra, “Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution,” Journal of Molecular Liquids, vol. 145, no. 1, pp. 33–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Hao, G. C. Schatz, and J. T. Hupp, “Synthesis and optical properties of anisotropic metal nanoparticles,” Journal of Fluorescence, vol. 14, no. 4, pp. 331–341, 2004. View at Google Scholar
  33. J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” Journal of the Chemical Society, Faraday Transactions, vol. 87, no. 24, pp. 3881–3891, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Tscharnuter, “Photon correlation spectroscopy in particle sizing,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, Ed., pp. 5469–5485, John Wiley & Sons, Chichester, UK, 2000. View at Publisher · View at Google Scholar
  35. D. D. Evanoff Jr. and G. Chumanov, “Synthesis and optical properties of silver nanoparticles and arrays,” ChemPhysChem, vol. 6, no. 7, pp. 1221–1231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants,” The Journal of Chemical Physics, vol. 57, no. 11, pp. 4814–4820, 1972. View at Google Scholar · View at Scopus
  37. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics, Dover, New York, NY, USA, 2000.
  38. A. B. Leung, K. I. Suh, and R. R. Ansari, “Particle-size and velocity measurements in flowing conditions using dynamic light scattering,” Applied Optics, vol. 45, no. 10, pp. 2186–2190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine, vol. 2, no. 5, pp. 681–693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Sato-Berŕu, R. Redón, A. Vázquez-Olmos, and J. M. Saniger, “Silver nanoparticles synthesized by direct photoreduction of metal salts. Application in surface-enhanced Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 4, pp. 376–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. D. Boyd, S. K. Pichaimuthu, and A. Cuenat, “New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering,” Colloids and Surfaces A, vol. 387, no. 1–3, pp. 35–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. C. M. Hoo, N. Starostin, P. West, and M. L. Mecartney, “A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions,” Journal of Nanoparticle Research, vol. 10, no. 1, pp. 89–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Dadosh, “Synthesis of uniform silver nanoparticles with a controllable size,” Materials Letters, vol. 63, no. 26, pp. 2236–2238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. J. Messinger, K. U. Von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Physical Review B, vol. 24, no. 2, pp. 649–657, 1981. View at Publisher · View at Google Scholar · View at Scopus
  45. N. G. Khlebtsov, “Determination of size and concentration of gold nanoparticles from extinction spectra,” Analytical Chemistry, vol. 80, no. 17, pp. 6620–6625, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. N. G. Khlebtsov, L. A. Trachuk, and A. G. Mel'nikov, “The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium,” Optics and Spectroscopy, vol. 98, no. 1, pp. 77–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. J.-L. Fraikin, T. Teesalu, C. M. McKenney, E. Ruoslahti, and A. N. Cleland, “A high-throughput label-free nanoparticle analyser,” Nature Nanotechnology, vol. 6, no. 5, pp. 308–313, 2011. View at Publisher · View at Google Scholar · View at Scopus