Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 316401, 6 pages
Research Article

Research on the Microstructure and Property of an Anion Rubber Modified Asphalt

1College of Textile Engineering and Art, Taiyuan University of Technology, Taiyuan 030024, China
2State Key Laboratory of Metastable Materials Science and Technology (Yanshan University), Qinhuangdao 066004, China
3Hesen Chemical Technology Co. Ltd., Chengdu 610072, China
4Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China

Received 9 March 2013; Accepted 28 April 2013

Academic Editor: Christian Brosseau

Copyright © 2013 Wei Hong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The anion rubber modified asphalt (ARMA) mixture was first successfully developed with a unique process. In the development process, rubber and asphalt were mixed in the same proportion. Furthermore, the microstructure and modification mechanism of the material were characterized by SEM, FT-IR, TG, and XRD tests. The mechanical property of the mixture was also tested in accordance with the relevant standards. In the end, the material’s capacity of releasing anion was measured by DLY-6A232 atmospheric ion gauge. The results indicated that the addition of anion additive into the rubber modified asphalt (RMA) was a mere physical mixture, and the anion additives and rubber particles uniformly dispersed in the ARMA. The addition of anion additive could improve the thermal stability of the RMA. Compared with the traditional asphalt pavement material, the ARMA material shows excellent mechanical properties as well as the ability of releasing anion. Moreover, the material has enormous economic and social benefits by taking full advantage of a large amount of waste tires, thus improving the road surrounding environment.