Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 351798, 7 pages
http://dx.doi.org/10.1155/2013/351798
Research Article

Effect of Annealing on the ZnS Nanocrystals Prepared by Chemical Precipitation Method

Department of Physics, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu 608 002, India

Received 19 July 2013; Revised 12 October 2013; Accepted 21 October 2013

Academic Editor: Hong Seok Lee

Copyright © 2013 Nadana Shanmugam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Fang, Y. Bando, U. K. Gautam et al., “ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors,” Critical Reviews in Solid State and Materials Sciences, vol. 34, no. 3-4, pp. 190–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Monroy, F. Omnes, and F. Calle, “Wide-band gap semiconductor ultraviolet photo detectors,” Semiconductor Science and Technology, vol. 18, pp. 33–51, 2003. View at Google Scholar
  3. C. Feigl, S. P. Russo, and A. S. Barnard, “Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles,” Journal of Materials Chemistry, vol. 20, no. 24, pp. 4971–4980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Google Scholar · View at Scopus
  5. P.-C. Kuo, H.-W. Wang, and S.-Y. Chen, “Synthesis and photoluminescent properties of wurtzite ZnS nanorods by hydrothermal and co-precipitation methods,” Journal of the Ceramic Society of Japan, vol. 114, no. 1335, pp. 918–922, 2006. View at Google Scholar · View at Scopus
  6. W. Park, T. C. Jones, W. Tong et al., “Luminescence decay kinetics in homogeneously and delta-doped ZnS:Mn,” Journal of Applied Physics, vol. 84, no. 12, pp. 6852–6858, 1998. View at Google Scholar · View at Scopus
  7. H. C. Ong and R. P. H. Chang, “Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry,” Applied Physics Letters, vol. 79, no. 22, pp. 3612–3614, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Yamamoto, S. Kishimoto, and S. Iida, “Control of valence states for ZnS by triple-codoping method,” Physica B, vol. 308–310, pp. 916–919, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Bredol and J. Merikhi, “ZnS precipitation: morphology control,” Journal of Materials Science, vol. 33, no. 2, pp. 471–476, 1998. View at Google Scholar · View at Scopus
  10. P. Calandra, M. Goffredi, and V. T. Liveri, “Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy,” Colloids and Surfaces A, vol. 160, no. 1, pp. 9–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Falcony, M. Garcia, A. Ortiz, and J. C. Alonso, “Luminescent properties of ZnS:Mn films deposited by spray pyrolysis,” Journal of Applied Physics, vol. 72, no. 4, pp. 1525–1527, 1992. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Tang and D. C. Cameron, “Electroluminescent zinc sulphide devices produced by sol-gel processing,” Thin Solid Films, vol. 280, no. 1-2, pp. 221–226, 1996. View at Google Scholar · View at Scopus
  13. C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Artificial skin to sense mechanical stress by visible light emission,” Applied Physics Letters, vol. 74, no. 9, pp. 1236–1238, 1999. View at Google Scholar · View at Scopus
  14. T. Kuzuya, Y. Tai, S. Yamamuro, and K. Sumiyama, “Synthesis of copper and zinc sulfide nanocrystals via thermolysis of the polymetallic thiolate cage,” Science and Technology of Advanced Materials, vol. 6, no. 1, pp. 84–90, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Amaranatha Reddy, G. Murali, B. Poornaprakash, R. P. Vijayalakshmi, and B. K. Reddy, “Effect of annealing temperature on optical and magnetic properties of Cr doped ZnS nanoparticles,” Solid State Communications, vol. 152, no. 7, pp. 596–602, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Biswas and S. Kar, “Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach,” Nanotechnology, vol. 19, no. 4, Article ID 045710, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Li, L. You, R. Duan et al., “Straight ZnS nanobelts with wurtzite structure synthesized by the vapour phase transport process and their crystallization and photoluminescence properties,” Nanotechnology, vol. 15, no. 5, pp. 581–585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Que, Y. Zhou, Y. L. Lam et al., “Photoluminescence and electroluminescence from copper doped zinc sulphide nanocrystals/polymer composite,” Applied Physics Letters, vol. 73, no. 19, pp. 2727–2729, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-P. Cong and S.-H. Yu, “Hybrid ZnO-dye hollow spheres with new optical properties from a self-assembly process based on evans blue dye and cetyltrimethylammonium bromide,” Advanced Functional Materials, vol. 17, no. 11, pp. 1814–1820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Yu, C. Wang, J. Yu, W. Shi, R. Deng, and H. Zhang, “Precursor induced synthesis of hierarchical nanostructured ZnO,” Nanotechnology, vol. 17, no. 14, pp. 3607–3612, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. R.-Q. Song, A.-W. Xu, B. Deng, Q. Li, and G.-Y. Chen, “From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts,” Advanced Functional Materials, vol. 17, no. 2, pp. 296–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Shen, Y. Bando, and C.-J. Lee, “Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process,” Journal of Physical Chemistry B, vol. 109, no. 21, pp. 10779–10785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Zhang and J. Mu, “Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate,” Nanotechnology, vol. 18, no. 7, Article ID 075606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Goswami and P. Sen, “Photoluminescent properties of ZnS nanoparticles prepared by electro-explosion of Zn wires,” Journal of Nanoparticle Research, vol. 9, no. 3, pp. 513–517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 1978.
  26. L. V. Azaroff, Elements of X-Ray Crystallography, McGraw-Hill, New York, NY, USA, 1968.
  27. R. K. Rana, L. Zhang, J. C. Yu, Y. Mastai, and A. Gedanken, “Mesoporous structures from supramolecular assembly of in situ generated ZnS nanoparticles,” Langmuir, vol. 19, no. 14, pp. 5904–5911, 2003. View at Publisher · View at Google Scholar · View at Scopus