Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 361249, 7 pages
Research Article

Effects of Surface Morphology of Ceramic Materials on Osteoblastic Cells Responses

1Laboratorio de Bioingeniería de Tejidos, Facultad de Odontología, Universidad Nacional Autónoma de México, Coyoacán, 04510 Ciudad de México, DF, Mexico
2Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510 Ciudad de México, DF, Mexico
3Tissue Bioengineering Laboratory, Division of Research and Postgraduate Studies, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Circuito Exterior s/n, Coyoacan, 04510 Mexico City, DF, Mexico

Received 5 September 2012; Revised 16 January 2013; Accepted 17 January 2013

Academic Editor: Nabeen Kumar Shrestha

Copyright © 2013 José Luis Suárez-Franco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nanostructure thin films of ZnAl2O4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl2O4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl2O4 nanostructured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nanostructure ceramic improves cell-material interaction with enhanced spreading and filopodia with multiple cellular extensions on the surface of the ceramic and enhancing cell viability/proliferation in comparison with bulk ceramic surfaces used as control. Altogether, these results suggest that zinc aluminate nanostructured materials have a great potential to be used in dental implant and bone substitute applications.