Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 370785, 10 pages
http://dx.doi.org/10.1155/2013/370785
Research Article

Processing of CNTs Reinforced Al-Based Nanocomposites Using Different Consolidation Techniques

Mechanical Engineering Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Received 5 August 2013; Revised 21 September 2013; Accepted 21 September 2013

Academic Editor: Fathallah Karimzadeh

Copyright © 2013 N. Al-Aqeeli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Torralba, C. E. da Costa, and F. Velasco, “P/M aluminum matrix composites: an overview,” Journal of Materials Processing Technology, vol. 133, no. 1-2, pp. 203–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. B. Fogagnolo, F. Velasco, M. H. Robert, and J. M. Torralba, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders,” Materials Science and Engineering A, vol. 342, no. 1-2, pp. 131–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Moons, P. Ratchev, P. de Smet, B. Verlinden, and P. Van Houtte, “A comparative study of two Al-Mg-Si alloys for automotive applications,” Scripta Materialia, vol. 35, no. 8, pp. 939–945, 1996. View at Google Scholar · View at Scopus
  4. X.-S. Jiang, G.-Q. He, B. Liu, S.-J. Fan, and M.-H. Zhu, “Microstructure-based analysis of fatigue behaviour of Al-Si-Mg alloy,” Transactions of Nonferrous Metals Society of China, vol. 21, no. 3, pp. 443–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Fukui, M. Takeda, and T. Endo, “Morphology and thermal stability of metastable precipitates formed in an Al-Mg-Si ternary alloy aged at 403 K to 483 K,” Materials Letters, vol. 59, no. 11, pp. 1444–1448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Matsuda, S. Ikeno, T. Sato, and Y. Uetani, “New quaternary grain boundary precipitate in Al-Mg-Si alloy containing silver,” Scripta Materialia, vol. 55, no. 2, pp. 127–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. E. Knipling, R. A. Karnesky, C. P. Lee, D. C. Dunand, and D. N. Seidman, “Precipitation evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at.%) alloys during isochronal aging,” Acta Materialia, vol. 58, no. 15, pp. 5184–5195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Banizs, “Dislocation structures caused by plastic deformations in an aged AlMgSi alloy,” Materials Science and Engineering, vol. 41, no. 1, pp. 17–24, 1979. View at Google Scholar · View at Scopus
  9. L. Wang, H. Choi, J.-M. Myoung, and W. Lee, “Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites,” Carbon, vol. 47, no. 15, pp. 3427–3433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. R. Bakshi and A. Agarwal, “An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites,” Carbon, vol. 49, no. 2, pp. 533–544, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Google Scholar · View at Scopus
  12. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, pp. 603–605, 1993. View at Google Scholar · View at Scopus
  13. V. N. Popov, “Carbon nanotubes: properties and application,” Materials Science and Engineering R, vol. 43, no. 3, pp. 61–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,” Composites Science and Technology, vol. 70, no. 16, pp. 2237–2241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Pérez-Bustamante, F. Pérez-Bustamante, I. Estrada-Guel et al., “Characterization of Al2024-CNTs composites produced by mechanical alloying,” Powder Technology, vol. 212, no. 3, pp. 390–396, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. C. He, N. Zhao, C. Shi et al., “An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites,” Advanced Materials, vol. 19, no. 8, pp. 1128–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. Senthil Saravanan, K. Sivaprasad, and S. P. Kumaresh Babu, “Dispersion and thermal analysis of Carbon nanotube reinforced AA 4032 Alloy produced by high energy ball milling,” Experimental Techniques, vol. 37, no. 4, pp. 14–18, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Ahamed and V. Senthilkumar, “Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying,” Journal of Alloys and Compounds, vol. 505, no. 2, pp. 772–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Esawi and K. Morsi, “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” Composites A, vol. 38, no. 2, pp. 646–650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Liao and M.-J. Tan, “Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use,” Powder Technology, vol. 208, no. 1, pp. 42–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites,” Composites A, vol. 42, no. 3, pp. 234–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. S. Upadhyaya, “Some issues in sintering science and technology,” Materials Chemistry and Physics, vol. 67, no. 1–3, pp. 1–5, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. C. D. Turner and M. F. Ashby, “The cold isostatic pressing of composite powders—I. Experimental investigations using model powders,” Acta Materialia, vol. 44, no. 11, pp. 4521–4530, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. R. M. Govindarajan and N. Aravas, “Deformation processing of metal powders: part I-Cold isostatic pressing,” International Journal of Mechanical Sciences, vol. 36, no. 4, pp. 343–357, 1994. View at Google Scholar · View at Scopus
  25. C. Musa, R. Licheri, A. M. Locci et al., “Energy efficiency during conventional and novel sintering processes: the case of Ti-Al2O3-TiC composites,” Journal of Cleaner Production, vol. 17, no. 9, pp. 877–882, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Paras, D. Kapoor, C. Haines et al., “Effect of powder processing on Aluminum Carbon nanotube composite consolidation,” in Nanotube Reinforced Metal Matrix Composites II: Processing of Nanotube Reinforced MMCs I, Houston, Tex, USA, 2010. View at Google Scholar
  27. C. Suryanarayana and N. Al-Aqeeli, “Mechanically Alloyed nanocomposites,” Progress in Materials Science, vol. 58, no. 4, pp. 383–502, 2013. View at Google Scholar
  28. C. Deng, X. Zhang, Y. Ma, and D. Wang, “Fabrication of aluminum matrix composite reinforced with carbon nanotubes,” Rare Metals, vol. 26, no. 5, pp. 450–455, 2007. View at Google Scholar
  29. M. Oghbaei and O. Mirzaee, “Microwave versus conventional sintering: a review of fundamentals, advantages and applications,” Journal of Alloys and Compounds, vol. 494, no. 1-2, pp. 175–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Kwon and A. Kawasaki, “Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures,” Journal of Nanoscience and Nanotechnology, vol. 9, no. 11, pp. 6542–6548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. J. K. Rana, D. Sivaprahasam, K. Seetharama Raju, and V. Subramanya Sarma, “Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering,” Materials Science and Engineering A, vol. 527, no. 1-2, pp. 292–296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, “Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites,” Carbon, vol. 47, no. 3, pp. 570–577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Saheb, A. Khalil AS Hakeem, N. Al-Aqeeli, and T. Laoui AK Al-Qutub, “Spark plasma sintering of CNT reinforced Al6061 and Al2124 nanocomposites,” submitted to. Journal of Composite Materials.
  34. N. Saheb, “Spark plasma and microwave sintering of Al6061 and Al2124 alloys,” International Journal of Minerals, Metallurgy and Materials, vol. 20, no. 2, pp. 152–159, 2013. View at Google Scholar