Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 475758, 8 pages
http://dx.doi.org/10.1155/2013/475758
Research Article

The Effect of Nitrogen Ion Implantation on the Surface Properties of Ti6Al4V Alloy Coated by a Carbon Nanolayer

1Faculty of Mechanical Engineering, Czech Technical University in Prague, 16607 Prague, Czech Republic
2Application Center Prague, LECO Instrument Plzen spol. s. r.o., 19000 Prague, Czech Republic
3Faculty of Mathematics and Physics, Charles University in Prague, 12116 Prague, Czech Republic

Received 20 September 2013; Revised 21 November 2013; Accepted 26 November 2013

Academic Editor: Tianchang Hu

Copyright © 2013 Petr Vlcak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The ion beam assisted deposition (IBAD) method was chosen for preparing a carbon thin film with a mixing area on a substrate of Ti6Al4V titanium alloy. Nitrogen ions with energy 90 keV were used. These form a broad ion beam mixing area at the interface between the carbon film and the substrate. We investigated the chemical composition by the glow discharge optical emission spectroscopy (GD-OES) method and the phases by the X-ray diffraction (XRD) method. The measured concentration profiles indicate the mixing of the carbon film into the substrate, which may have an effect on increasing the adhesion of the deposited film. The nanohardness and the coefficient of friction were measured. We found that the modified samples had a markedly lower coefficient of friction even after damage to the carbon film, and they also had higher nanohardness than the unmodified samples. The increased nanohardness is attributed to the newly created phases that arose with ion implantation of nitrogen ions.