Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 501320, 13 pages
http://dx.doi.org/10.1155/2013/501320
Review Article

Sensing Heavy Metals Using Mesoporous-Based Optical Chemical Sensors

1Institute of Environmental Protection and Sensors, Beloruska 7, 2000 Maribor, Slovenia
2University of Maribor, Faculty of Mechanical Engineering, Centre of Sensor Technology, Smetanova 17, 2000 Maribor, Slovenia

Received 10 May 2013; Revised 30 July 2013; Accepted 18 September 2013

Academic Editor: Pathik Kumbhakar

Copyright © 2013 Špela Korent Urek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Duffus, “‘Heavy metals‘—a meaningless term?” Pure and Applied Chemistry, vol. 74, no. 5, pp. 793–807, 2002. View at Google Scholar · View at Scopus
  2. G. Aragay, J. Pons, and A. Merkoçi, “Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection,” Chemical Reviews, vol. 111, no. 5, pp. 3433–3458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. WHO, Guidelines for Drinking-Water Quality Volume I: Recommendations, Geneva, Switzerland, 3rd edition, 2008.
  4. U.S. Environmental Protection Agency, Risk Assessment, Management and Communication of Drinking Water Contamination, US EPA 625/4-89/024, EPA, Washington, DC, USA, 1989.
  5. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption, pp. 90–112, 1998.
  6. R. Kunkel and S. E. Manahan, “Atomic absorption analysis of strong heavy metal chelating agents in water and waste water,” Analytical Chemistry, vol. 45, no. 8, pp. 1465–1468, 1973. View at Google Scholar · View at Scopus
  7. M. Lopez-Artiguez, A. Cameán, and M. Repetto, “Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry,” Journal of Analytical Toxicology, vol. 17, no. 1, pp. 18–22, 1993. View at Google Scholar · View at Scopus
  8. N. H. Bings, A. Bogaerts, and J. A. C. Broekaert, “Atomic spectroscopy,” Analytical Chemistry, vol. 78, no. 12, pp. 3917–3946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Pohl, “Determination of metal content in honey by atomic absorption and emission spectrometries,” Trends in Analytical Chemistry, vol. 28, no. 1, pp. 117–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Mayr, S. M. Borisov, T. Abel et al., “Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors,” Analytical Chemistry, vol. 81, no. 15, pp. 6541–6545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Gasparik, D. Vladarova, M. Capcarova et al., “Concentration of lead, cadmium, mercury and arsenic in leg skeletal muscles of three species of wild birds,” Journal of Environmental Science and Health A, vol. 45, no. 7, pp. 818–823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. E. Lorber, “Monitoring of heavy metals by energy dispersive X-ray fluorescence spectrometry,” Waste Management and Research, vol. 4, no. 1, pp. 3–13, 1986. View at Google Scholar · View at Scopus
  13. F. E. McNeill and J. M. O'Meara, “The in vivo measurement of trace heavy metals by K x-ray fluorescence,” Advances in X-Ray Analysis, vol. 41, pp. 910–921, 1999. View at Google Scholar
  14. L. J. Blum, Bio- and Chemi-Luminescent Sensors, World Scientific Publishing Company, Singapore, 1997.
  15. A. Lobnik, “Absorption-based sensors,” in Optical Chemical Sensors, F. Baldini, A. N. Chester, J. Homola, and S. Martellucci, Eds., pp. 77–98, Springer, Amsterdam, The Netherlands, 2006. View at Google Scholar
  16. S. Nagl and O. S. Wolfbeis, “Classifiction of optical chemical sensors and biosensors based on fluorescence and phosphorescence,” in Standardization and Quality Assurance in Fluorescence Measurements I, vol. 5 of Springer Series on Fluorescence, pp. 325–346, 2008. View at Google Scholar
  17. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” Chemical Reviews, vol. 108, no. 2, pp. 400–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Lobnik, I. Oehme, I. Murkovic, and O. S. Wolfbeis, “pH optical sensors based on sol-gels: chemical doping versus covalent immobilization,” Analytica Chimica Acta, vol. 367, no. 1–3, pp. 159–165, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Lobnik, M. Turel, Š. Korent Urek, and A. Košak, “Nanostructured materials use in sensors: their benefits and drawbacks,” in Carbon and Oxide Nanostructures, A. Öchsner, H. Altenbach, and L. F. Martins da Silva, Eds., pp. 307–354, Springer, Berlin, Germany, 2010. View at Google Scholar
  20. J. V. Ros-Lis, R. Casasús, M. Comes et al., “A mesoporous 3D hybrid material with dual functionality for Hg2+ detection and adsorption,” Chemistry, vol. 14, pp. 8267–8278, 2008. View at Publisher · View at Google Scholar
  21. S. A. El-Safty, “Organic-inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions,” Journal of Materials Science, vol. 44, no. 24, pp. 6764–6774, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Kim, H. Eun Kim, S. Jin Lee, S. Sung Lee, M. Lyong Seo, and J. Hwa Jung, “Reversible solid optical sensor based on acyclic-type receptor immobilized SBA-15 for the highly selective detection and separation of Hg(II) ion in aqueous media,” Chemical Communications, no. 33, pp. 3921–3923, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Zhou, Q. Meng, G. He, H. Wu, C. Duan, and X. Quan, “Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2+ in aqueous media,” Journal of Environmental Monitoring, vol. 11, no. 3, pp. 648–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Song, X. Zhang, C. Jia, P. Zhou, X. Quan, and C. Duan, “Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in Aqueous Media,” Talanta, vol. 81, no. 1-2, pp. 643–649, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Wu, Z. Wang, G. Wu, and W. Huang, “Chemosensory rhodamine-immobilized mesoporous silica material for extracting mercury ion in water with improved sensitivity,” Materials Chemistry and Physics, vol. 137, no. 1, pp. 428–433, 2012. View at Publisher · View at Google Scholar
  26. Y. Wang, B. Li, L. Zhang et al., “A highly selective regenerable optical sensor for detection of mercury(II) ion in water using organic-inorganic hybrid nanomaterials containing pyrene,” New Journal of Chemistry, vol. 34, no. 9, pp. 1946–1953, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. Z. Jin, X.-B. Zhang, D.-X. Xie et al., “Clicking fluoroionophores onto mesoporous silicas: a universal strategy toward efficient fluorescent surface sensors for metal ions,” Analytical Chemistry, vol. 82, no. 15, pp. 6343–6346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Wang, P. Wang, Z. Dong et al., “Highly sensitive fluorescence probe based on functional SBA-15 for selective detection of Hg2+,” Nanoscale Research Letters, vol. 5, no. 9, pp. 1468–1473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Zhang, G. Li, Z. Cheng, and X. Zuo, “Rhodamine B immobilized on hollow Au-HMS material for naked-eye detection of Hg2+ in aqueous media,” Journal of Hazardous Materials, vol. 229-230, pp. 401–410, 2012. View at Google Scholar
  30. Z. Dong, X. Tian, Y. Chen, J. Hou, and J. Ma, “Rhodamine group modified SBA-15 fluorescent sensor for highly selective detection of Hg2+ and its application as an INHIBIT logic device,” RSC Advances, vol. 3, no. 7, pp. 2227–2233, 2013. View at Google Scholar
  31. X. Guo, B. Li, L. Zhang, and Y. Wang, “Highly selective fluorescent chemosensor for detecting Hg(II) in water based on pyrene functionalized coreshell structured mesoporous silica,” Journal of Luminescence, vol. 132, no. 7, pp. 1729–1734, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. N.-B. Zhang, J.-J. Xu, and C.-G. Xue, “Core-shell structured mesoporous silica nanoparticles equipped with pyrene-based chemosensor: synthesis, characterization, and sensing activity towards Hg(II),” Journal of Luminescence, vol. 131, no. 9, pp. 2021–2025, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Sánchez, D. Curiel, I. Ratera, A. Tárraga, J. Veciana, and P. Molina, “Modified mesoporous silica nanoparticles as a reusable, selective chromogenic sensor for mercury(II) recognition,” Dalton Transactions, vol. 42, no. 18, pp. 6318–6326, 2013. View at Publisher · View at Google Scholar
  34. D. Zhai, K. Zhang, Y. Zhang et al., “Mesoporous silica equipped with europium-based chemosensor for mercury ion detection: synthesis, characterization, and sensing performance,” Inorganica Chimica Acta, vol. 387, pp. 396–400, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Kim, S. Seo, M. L. Seo, and J. H. Jung, “Functionalized monolayers on mesoporous silica and on titania nanoparticles for mercuric sensing,” Analyst, vol. 135, no. 1, pp. 149–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. Q. Meng, X. Zhang, C. He, G. He, P. Zhou, and C. Duan, “Multifunctional mesoporous silica material used for detection and adsorption of Cu2+in aqueous solution and biological applications in vitro and in vivo,” Advanced Functional Materials, vol. 20, no. 12, pp. 1903–1909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. A. El-Safty, A. A. Ismail, and A. Shahat, “Optical supermicrosensor responses for simple recognition and sensitive removal of Cu (II) Ion target,” Talanta, vol. 83, no. 5, pp. 1341–1351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Lu, J. Lei, Z. Tian, L. Wang, and J. Zhang, “Cu2+ fluorescent sensor based on mesoporous silica nanosphere,” Dyes and Pigments, vol. 94, no. 2, pp. 239–246, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Liu, G. Li, N. Zhang, and Y. Chen, “An inorganic-organic hybrid optical sensor for heavy metal ion detection based on immobilizing 4-(2-pyridylazo)-resorcinol on functionalized HMS,” Journal of Hazardous Materials, vol. 201-202, pp. 155–161, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Pal, S. K. Rastogi, C. M. Gibson, D. E. Aston, A. L. Branen, and T. E. Bitterwolf, “Fluorescence sensing of Zinc(II) using ordered mesoporous silica material (MCM-41) functionalized with N -(Quinolin-8-yl)-2-[3-(triethoxysilyl)propylamino]acetamide,” ACS Applied Materials and Interfaces, vol. 3, no. 2, pp. 279–286, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Lu, L. Yang, Z. Tian, L. Wang, and J. Zhang, “Core-shell mesoporous silica nanospheres used as Zn2+ ratiometric fluorescent sensor and adsorbent,” RSC Advances, vol. 2, no. 7, pp. 2783–2789, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Shahid, P. Srivastava, S. S. Razi, R. Ali, and A. Misra, “Detection of Zn2+ ion on a reusable fluorescent mesoporous silica beads in aqueous medium,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012. View at Publisher · View at Google Scholar
  43. J. Tan, H. F. Wang, and X. P. Yan, “A fluorescent sensor array based on ion imprinted mesoporous silica,” Biosensors and Bioelectronics, vol. 24, no. 11, pp. 3316–3321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. A. El-Safty, “Functionalized hexagonal mesoporous silica monoliths with hydrophobic azo-chromophore for enhanced Co(II) ion monitoring,” Adsorption, vol. 15, no. 3, pp. 227–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. A. El-Safty, A. A. Ismail, H. Matsunaga, H. Nanjo, and F. Mizukami, “Uniformly mesocaged cubic Fd3m monoliths as modal carriers for optical chemosensors,” Journal of Physical Chemistry C, vol. 112, no. 13, pp. 4825–4835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. Q. Meng, W. Su, X. Hang, X. Li, C. He, and C. Duan, “Dye-functional mesoporous silica material for fluorimetric detection of Cr(III) in aqueous solution and biological imaging in living systems,” Talanta, vol. 86, no. 1, pp. 408–414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Q. Meng, W. Su, X. Hang, X. Li, C. He, and C. Duan, “Dye-functional mesoporous silica material for fluorimetric detection of Cr(III) in aqueous solution and biological imaging in living systems,” Talanta, vol. 86, no. 1, pp. 408–414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. A. El-Safty, D. Prabhakaran, A. A. Ismail, H. Matsunaga, and F. Mizukami, “Three-dimensional wormhole and ordered mesostructures and their applicability as optically ion-sensitive probe templates,” Chemistry of Materials, vol. 20, no. 8, pp. 2644–2654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Wang, S. Chu, F. Kong, L. Luo, Y. Wang, and Z. Zou, “Designing a smart fluorescence chemosensor within the tailored channel of mesoporous material for sensitively monitoring toxic heavy metal ions Pb(II),” Sensors and Actuators B, vol. 150, no. 1, pp. 25–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, “Silica-based mesoporous organic-inorganic hybrid materials,” Angewandte Chemie, vol. 45, no. 20, pp. 3216–3251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. G. J. D. A. A. Soler-Illia, C. Sanchez, B. Lebeau, and J. Patarin, “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures,” Chemical Reviews, vol. 102, no. 11, pp. 4093–4138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. F. Hoffman and M. Fröba, “Visiting porous inorganic silica networks with organic functions-PMOs and related hybrid materials,” Chemical Society Reviews, vol. 40, no. 2, pp. 608–620, 2011. View at Publisher · View at Google Scholar
  53. Y. Wan and D. Zhao, “On the controllable soft-templating approach to mesoporous silicates,” Chemical Reviews, vol. 107, no. 7, pp. 2821–2860, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Meynen, P. Cool, and E. F. Vansant, “Verified syntheses of mesoporous materials,” Microporous and Mesoporous Materials, vol. 125, no. 3, pp. 170–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Y. Ying, C. P. Manhert, and M. S. Wong, “Synthesis and applications of supramolecular-templated mesoporous materials,” Angewandte Chemie, vol. 38, pp. 56–77, 1999. View at Google Scholar
  56. J. D. Epping and B. F. Chmelka, “Nucleation and growth of zeolites and inorganic mesoporous solids: molecular insights from magnetic resonance spectroscopy,” Current Opinion in Colloid and Interface Science, vol. 11, no. 2-3, pp. 81–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. G. L. Athens, R. M. Shayib, and B. F. Chmelka, “Functionalization of mesostructured inorganic-organic and porous inorganic materials,” Current Opinion in Colloid and Interface Science, vol. 14, no. 4, pp. 281–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Wang, Y. Liu, B. Li, S. Yue, and W. Li, “Optical oxygen sensing materials based on trinuclear starburst ruthenium(II) complexes assembled in mesoporous silica,” Journal of Luminescence, vol. 128, no. 3, pp. 341–347, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, “The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials,” Bulletin of the Chemical Society of Japan, vol. 63, no. 4, pp. 988–992, 1990. View at Google Scholar · View at Scopus
  60. X. Wu, L. Song, B. Li, and Y. Liu, “Synthesis, characterization, and oxygen sensing properties of Ru(II) complex covalently grafted to mesoporous MCM-41,” Journal of Luminescence, vol. 130, no. 3, pp. 374–379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Liu, B. Li, Y. Cong, L. Zhang, D. Fan, and L. Shi, “Optical oxygen sensing materials based on a novel dirhenium(I) complex assembled in mesoporous silica,” Journal of Luminescence, vol. 131, no. 4, pp. 781–785, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Shi, B. Li, S. Yue, and D. Fan, “Synthesis, photophysical and oxygen-sensing properties of a novel bluish-green emission Cu(I) complex,” Sensors and Actuators B, vol. 137, no. 1, pp. 386–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Haitao, Y. Huilin, L. Fan, and L. Yang, “Fabrication and performances of an optical sensor system constructed by a novel Cu(I) complex embedded on silica matrix,” Journal of Luminescence, vol. 132, no. 1, pp. 198–204, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. C. Chang, H. Bai, S. N. Li, and C. N. Kuo, “Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument,” Sensors, vol. 11, no. 4, pp. 4060–4072, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Zhu, R. Liu, J. Xu, and C. Meng, “Preparation and characterization of mesoporous silicon spheres directly from MCM-48 and their response to ammonia,” Journal of Materials Science, vol. 46, no. 22, pp. 7223–7227, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. F. Liu, L.-J. Zhang, J.-H. Xiao, J. Hu, and H.-L. Liu, “A mesoporous silica modified conjugated polymer film: preparation and detection nitroaromatics in aqueous phase,” Frontiers of Materials Science in China, vol. 4, no. 2, pp. 158–163, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Li, J. Liu, R. T. Kwok, Z. Liang, B. Z. Tang, and J. Yu, “Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials,” Chemical Communications, vol. 48, no. 57, pp. 7167–7169, 2012. View at Publisher · View at Google Scholar
  68. S. El-Safty and M. A. Sheneshen, “High-order mesoporous (HOM) sensors for visual recognition of toxic metal ions in drinking water,” in Proceedings of the 14th International Meeting on Chemical Sensors (IMCS '12), pp. 725–728, Nuremberg, Germany, 2012. View at Publisher · View at Google Scholar
  69. H. Zhang, B. Lei, W. Mai, and Y. Liu, “Oxygen-sensing materials based on ruthenium(II) complex covalently assembled mesoporous MSU-3 silica,” Sensors and Actuators B, vol. 160, no. 1, pp. 677–683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Kleitz, S. H. Choi, and R. Ryoo, “Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes,” Chemical Communications, vol. 9, no. 17, pp. 2136–2137, 2003. View at Google Scholar · View at Scopus
  71. X. Liu, B. Tian, T. Yu et al., “Room temperature synthesis in acidic media of large pore three-dimension bicontinuous mesoporous silica with Ia3d symmetry,” Angewandte Chemie, vol. 41, pp. 3876–3878, 2002. View at Google Scholar
  72. S. A. El-Safty and T. Hanaoka, “Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases,” Chemistry of Materials, vol. 15, no. 15, pp. 2892–2902, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. S. A. El-Safty and T. Hanaokat, “Microemulsion liquid crystal templates for highly ordered three-dimensional mesoporous silica monoliths with controllable mesopore structures,” Chemistry of Materials, vol. 16, no. 3, pp. 384–400, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. S. A. El-Safty, T. Hanaoka, and F. Mizukami, “Large-scale design of cubic Ia3d mesoporous silica monoliths with high order, controlled pores, and hydrothermal stability,” Advanced Materials, vol. 17, pp. 47–53, 2005. View at Google Scholar · View at Scopus
  75. S. A. El-Safty and J. Evans, “Formation of highly ordered mesoporous silica materials adopting lyotropic liquid crystal mesophases,” Journal of Materials Chemistry, vol. 12, no. 1, pp. 117–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Gao, Y. Sakamoto, K. Sakamoto, O. Terasaki, and S. Che, “Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry,” Angewandte Chemie, vol. 45, no. 26, pp. 4295–4298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, “Nonionic triblock and star diblock copolymer and oligomeric sufactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures,” Journal of the American Chemical Society, vol. 120, no. 24, pp. 6024–6036, 1998. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Z. Yu, Y. H. Yu, and D. Y. Zhao, “Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer,” Chemical Communications, no. 7, pp. 575–576, 2000. View at Google Scholar · View at Scopus
  79. Q. Huo, D. I. Margolese, and G. D. Stucky, “Surfactant control of phases in the synthesis of mesoporous silica-based materials,” Chemistry of Materials, vol. 8, no. 5, pp. 1147–1160, 1996. View at Google Scholar · View at Scopus
  80. Q. Huo, D. I. Margolese, U. Ciesla et al., “Generalized synthesis of periodic surfactant/inorganic composite materials,” Nature, vol. 368, no. 6469, pp. 317–321, 1994. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Sakamoto, M. Kaneda, O. Terasaki et al., “Direct imaging of the pores and cages of three-dimensional mesoporous materials,” Nature, vol. 408, no. 6811, pp. 449–453, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Fan, C. Z. Yu, F. Gao et al., “Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties,” Angewandte Chemie, vol. 42, no. 27, pp. 3146–3150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Kleitz, D. Liu, G. M. Anilkumar et al., “Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure,” Journal of Physical Chemistry B, vol. 107, no. 51, pp. 14296–14300, 2003. View at Google Scholar · View at Scopus
  84. J. R. Matos, M. M. Kruk, L. P. Mercuri et al., “Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time,” Journal of the American Chemical Society, vol. 125, no. 3, pp. 821–829, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. S. D. Shen, Y. Q. Li, Z. D. Zhang et al., “A novel ordered cubic mesoporous silica templated with tri-head group quaternary ammonium surfactant,” Chemical Communications, no. 19, pp. 2212–2213, 2002. View at Google Scholar · View at Scopus
  86. S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, and T. Tatsumi, “Synthesis and characterization of chiral mesoporous silica,” Nature, vol. 429, no. 6989, pp. 281–284, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature, vol. 359, no. 6397, pp. 710–712, 1992. View at Google Scholar · View at Scopus
  88. J. S. Beck, J. C. Vartuli, W. J. Roth et al., “A new family of mesoporous molecular sieves prepared with liquid crystal templates,” Journal of the American Chemical Society, vol. 114, no. 27, pp. 10834–10843, 1992. View at Google Scholar · View at Scopus
  89. T. Mayr, S. M. Borisov, T. Abel et al., “Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors,” Analytical Chemistry, vol. 81, no. 15, pp. 6541–6545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. E.-B. Cho, D. O. Volkov, and I. Sokolov, “Ultrabright fluorescent silica mesoporous silica nanoparticles: control of particle size and dye loading,” Advanced Functional Materials, vol. 21, no. 16, pp. 3129–3135, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. E.-B. Cho, D. O. Volkov, and I. Sokolov, “Ultrabright fluorescent mesoporous silica nanoparticles,” Small, vol. 6, no. 20, pp. 2314–2319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Comes, M. D. Marcos, R. Martínez-Máñez et al., “Hybrid functionalized silica-polymer composites for enhanced analyte monitoring using optical sensors,” Journal of Materials Chemistry, vol. 18, pp. 5815–5823, 2008. View at Publisher · View at Google Scholar
  93. B. J. Melde, B. J. Johnson, and P. T. Charles, “Mesoporous silicat materials in sensing,” Sensors, vol. 8, no. 8, pp. 5202–5228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. W. S. Han, H. Y. Lee, S. H. Jung, S. J. Lee, and J. H. Jung, “Silica-based chromogenic and fluorogenic hybrid chemosensor materials,” Chemical Society Reviews, vol. 38, no. 7, pp. 1904–1915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. T.-H. Tran-Thi, R. Dagnelie, S. Crunaire, and L. Nicole, “Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors,” Chemical Society Reviews, vol. 40, pp. 621–639, 2011. View at Google Scholar
  96. T.-H. Tran-Thi, R. Dagnelie, S. Crunaire, and L. Nicole, “Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors,” Chemical Society Reviews, vol. 40, no. 2, pp. 621–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. O. S. Wolfbeis, “Materials for fluorescence-based optical chemical sensors,” Journal of Materials Chemistry, vol. 15, no. 27-28, pp. 2657–2669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 2006.
  99. G. Guilbault, Practical Fluorescence, Marcel Dekker, New York, NY, USA, 1990.
  100. S. G. Schulman, Molecular Luminescence Spectroscopy, Methods and Applications, Part 2, John Wiley & Sons, New York, NY, USA, 1988.
  101. O. S. Wolfbeis, in Fiber Optic Chemical Sensors and Biosensors, CRC Press, Boca Raton, Fla, USA, 1991.
  102. M. Valledor, J. C. Campo, I. Sánchez-Barragán, J. C. Viera, J. M. Costa-Fernández, and A. Sanz-Medel, “Luminescent ratiometric method in the frequency domain with dual phase-shift measurements: application to oxygen sensing,” Sensors and Actuators B, vol. 117, no. 1, pp. 266–273, 2006. View at Publisher · View at Google Scholar
  103. S. M. Buck, Y.-E. L. Koo, E. Park et al., “Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding,” Current Opinion in Chemical Biology, vol. 8, no. 5, pp. 540–546, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Sun, A. M. Scharff-Poulsen, H. Gu, and K. Almdal, “Synthesis and characterization of ratiometric, pH sensing nanoparticles with covalently attached fluorescent dyes,” Chemistry of Materials, vol. 18, no. 15, pp. 3381–3384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Prasanna de Silva, T. S. Moody, and G. D. Wright, “Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools,” Analyst, vol. 134, no. 12, pp. 2385–2393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. X. M. Meng, S. X. Wang, and M. Z. Zhu, “Quinoline-based fluorescence sensors,” in Molecular Photochemistry—Various Aspects, S. Saha, Ed., InTech, Rijeka, Croatia, 2012. View at Google Scholar
  107. M. Formica, V. Fusi, L. Giorgi, and M. Micheloni, “New fluorescent chemosensors for metal ions in solution,” Coordination Chemistry Reviews, vol. 256, no. 1-2, pp. 170–192, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. Z. Liu, W. He, and Z. Guo, “Metal coordination in photoluminescent sensing,” Chemical Society Reviews, vol. 42, no. 4, pp. 1568–1600, 2013. View at Publisher · View at Google Scholar
  109. B. Valeur and I. Leray, “Design principles of fluorescent molecular sensors for cation recognition,” Coordination Chemistry Reviews, vol. 205, no. 1, pp. 3–40, 2000. View at Google Scholar · View at Scopus
  110. C. B. Braungardt, E. P. Achterberg, B. Axelsson et al., “Analysis of dissolved metal fractions in coastal waters: an inter-comparison of five voltammetric in situ profiling (VIP) systems,” Marine Chemistry, vol. 114, no. 1-2, pp. 47–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. I. Oehme and O. S. Wolfbeis, “Optical sensors for determination of heavy metal ions,” Mikrochimica Acta, vol. 126, no. 3-4, pp. 177–192, 1997. View at Google Scholar · View at Scopus