Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 502150, 7 pages
http://dx.doi.org/10.1155/2013/502150
Research Article

Electronic and Thermal Transport Properties of Complex Structured Cu-Bi-Se Thermoelectric Compound with Low Lattice Thermal Conductivity

1Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
2Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
3Materials R&D Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712, Republic of Korea
4Powder and Ceramics Division, Powder Technology Department, Korea Institute of Materials Science, Changwon 642-831, Republic of Korea

Received 22 June 2013; Revised 20 July 2013; Accepted 5 August 2013

Academic Editor: Hyung-Ho Park

Copyright © 2013 Jae-Yeol Hwang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. J. Disalvo, “Thermoelectric cooling and power generation,” Science, vol. 285, no. 5428, pp. 703–706, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nature Materials, vol. 7, no. 2, pp. 105–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. H. J. Goldsmid, “Recent studies of bismuth telluride and its alloys,” Journal of Applied Physics, vol. 32, no. 10, pp. 2198–2202, 1961. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Abeles, “Lattice thermal conductivity of disordered semiconductor alloys at high temperatures,” Physical Review, vol. 131, no. 5, pp. 1906–1911, 1963. View at Publisher · View at Google Scholar · View at Scopus
  5. W. M. Yim, E. V. Fitzke, and F. D. Rosi, “Thermoelectric properties of Bi2Te3-Sb2Te3-Sb2Se3 pseudo-ternary alloys in the temperature range 77 to 300 K,” Journal of Materials Science, vol. 1, no. 1, pp. 52–65, 1966. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Wood, “Materials for thermoelectric energy conversion,” Reports on Progress in Physics, vol. 51, no. 4, pp. 459–539, 1988. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, “High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity,” Physical Review Letters, vol. 86, no. 19, pp. 4350–4353, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, “Ag9TlTe5: a high-performance thermoelectric bulk material with extremely low thermal conductivity,” Applied Physics Letters, vol. 87, no. 6, Article ID 061919, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. B. C. Sales, D. Mandrus, and R. K. Williams, “Filled skutterudite antimonides: a new class of thermoelectric materials,” Science, vol. 272, no. 5266, pp. 1325–1328, 1996. View at Google Scholar · View at Scopus
  10. V. Keppens, D. Mandrus, B. C. Sales et al., “Localized vibrational modes in metallic solids,” Nature, vol. 395, no. 6705, pp. 876–878, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, “Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R = La, Ce, and Sr),” Applied Physics Letters, vol. 90, no. 19, Article ID 192111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack, “Glasslike heat conduction in high-mobility crystalline semiconductors,” Physical Review Letters, vol. 82, no. 4, pp. 779–782, 1999. View at Google Scholar · View at Scopus
  13. D.-Y. Chung, T. Hogan, P. Brazis et al., “CsBi4Te6: a high-performance thermoelectric material for low- temperature applications,” Science, vol. 287, no. 5455, pp. 1024–1027, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Delaire, J. Ma, K. Marty et al., “Giant anharmonic phonon scattering in PbTe,” Nature Materials, vol. 10, no. 8, pp. 614–619, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, “Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys,” Applied Physics Letters, vol. 94, no. 10, Article ID 102111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. K. Liebmann and E. A. Miller, “Preparation phase-boundary energies, and thermoelectric properties of Insb-Sb eutectic alloys with ordered microstructures,” Journal of Applied Physics, vol. 34, no. 9, pp. 2653–2659, 1963. View at Publisher · View at Google Scholar · View at Scopus
  17. A. I. Hochbaum, R. Chen, R. D. Delgado et al., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol. 451, no. 7175, pp. 163–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Y. Cho, H. Mun, B. Ryu et al., “Cu-Bi-Se-based pavonite homologue: a promising thermoelectric material with low lattice thermal conductivity,” Journal of Material Chemistry A, vol. 1, no. 34, pp. 9768–9774, 2013. View at Publisher · View at Google Scholar
  19. L. D. Zhao, S. Hao, S. H. Lo et al., “High thermoelectric performance via hierarchical compositionally alloyed nanostructures,” Journal of the American Chemical Society, vol. 135, no. 19, pp. 7364–7370, 2013. View at Google Scholar
  20. G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, “Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties,” Nature Materials, vol. 3, no. 7, pp. 458–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Liu, X. Shi, F. Xu et al., “Copper ion liquid-like thermoelectrics,” Nature Materials, vol. 11, no. 5, pp. 422–425, 2012. View at Publisher · View at Google Scholar · View at Scopus