Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 510524, 7 pages
http://dx.doi.org/10.1155/2013/510524
Research Article

Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

Department of Chemistry, Sookmyung Women’s University, Seoul 140-742, Republic of Korea

Received 19 July 2013; Accepted 12 September 2013

Academic Editor: Guangyu Zhao

Copyright © 2013 Seo Young Yoon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Babayan, J. Y. Jeong, A. Schütze et al., “Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet,” Plasma Sources Science and Technology, vol. 10, no. 4, pp. 573–578, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. F. Ceiler Jr., P. A. Kohl, and S. A. Bidstrup, “Plasma-enhanced chemical vapor deposition of silicon dioxide deposited at low temperatures,” Journal of the Electrochemical Society, vol. 142, no. 6, pp. 2067–2071, 1995. View at Google Scholar · View at Scopus
  3. K. Ikeda, S. Nakayama, and M. Maeda, “Characteristics of silicon dioxide films on patterned substrates prepared by atmospheric-pressure chemical vapor deposition using tetraethoxysilane and ozone,” Journal of the Electrochemical Society, vol. 143, no. 5, pp. 1715–1718, 1996. View at Google Scholar · View at Scopus
  4. K. Murase, “Dielectric constant of silicon dioxide deposited by atmospheric-pressure chemical vapor deposition using tetraethylorthosilicate and ozone,” Japanese Journal of Applied Physics, vol. 33, no. 3, pp. 1385–1389, 1994. View at Google Scholar · View at Scopus
  5. W. J. Patrick, G. C. Schwartz, J. D. Chapple-Sokol, R. Carruthers, and K. Olsen, “Plasma-enhanced chemical vapor deposition of silicon dioxide films using tetraethoxysilane and oxygen: characterization and properties of films,” Journal of the Electrochemical Society, vol. 139, no. 9, pp. 2604–2613, 1992. View at Google Scholar · View at Scopus
  6. S. K. Ray, C. K. Maiti, S. K. Lahiri, and N. B. Chakrabarti, “TEOS-based PECVD of silicon dioxide for VLSI applications,” Advanced Materials for Optics and Electronics, vol. 6, no. 2, pp. 73–82, 1996. View at Google Scholar · View at Scopus
  7. K. S. Kim and Y. Roh, “Silicon dioxide deposited by using liquid phase deposition at room temperature for nanometer-scaled isolation technology,” Journal of the Korean Physical Society, vol. 51, no. 3, pp. 1191–1194, 2007. View at Google Scholar · View at Scopus
  8. A. I. Kingon, J.-P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, vol. 406, no. 6799, pp. 1032–1038, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara, “Formation of silicon dioxide films in acidic solutions,” Applied Surface Science, vol. 48-49, pp. 405–408, 1991. View at Google Scholar · View at Scopus
  10. A. V. Valiulis and P. Silickas, “Liquid phase deposition methods monitoring techniques influence for solid substrates and thin metal oxide films properties,” Journal of Achievements in Materials and Manufacturing Engineering, vol. 24, pp. 188–192, 2007. View at Google Scholar
  11. E. A. Whitsitt and A. R. Barron, Liquid phase deposition of silica: thin films, colloids and fullerenes [Ph.D. thesis], 2004.
  12. H. Nagayama, H. Honda, and H. Kawahara, “New process for silica coating solid-state science and technology,” Journal of the Electrochemical Society, vol. 135, no. 8, pp. 2013–2016, 1988. View at Google Scholar
  13. K. Tsukuma, T. Akiyama, N. Yamada, and H. Imai, “Liquid phase deposition of a film of silica with an organic functional group,” Journal of Non-Crystalline Solids, vol. 231, no. 1-2, pp. 161–168, 1998. View at Google Scholar · View at Scopus
  14. K. S. Kim and Y. Roh, “Silicon dioxide deposited by using liquid phase deposition at room temperature for nanometer-scaled isolation technology,” Journal of the Korean Physical Society, vol. 51, no. 3, pp. 1191–1194, 2007. View at Google Scholar · View at Scopus
  15. E. A. Whitsitt and A. R. Barron, “Effect of surfactant on particle morphology for liquid phase deposition of submicron silica,” Journal of Colloid and Interface Science, vol. 287, no. 1, pp. 318–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” Journal of Colloid And Interface Science, vol. 26, no. 1, pp. 62–69, 1968. View at Google Scholar · View at Scopus
  17. K. Nozawa, H. Gailhanou, L. Raison et al., “Smart control of monodisperse stöber silica particles: effect of reactant addition rate on growth process,” Langmuir, vol. 21, no. 4, pp. 1516–1523, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. N. N. Khanh and B. Y. Kyung, “Facile organization of colloidal particles into large, perfect one-and two-dimensional arrays by dry manual assembly on patterned substrates,” Journal of the American Chemical Society, vol. 131, no. 40, pp. 14228–14230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Reculusa and S. Ravaine, “Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique,” Chemistry of Materials, vol. 15, no. 2, pp. 598–605, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Zhu, Z. Yu, G. F. Burkhart et al., “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Letters, vol. 9, no. 1, pp. 279–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Yi, H. S. Jang, J. S. Lee, and W. I. Park, “Bioinspired morphogenesis of highly intricate and symmetric silica nanostructures,” Nano Letters, vol. 12, pp. 743–3748, 2012. View at Publisher · View at Google Scholar
  22. C. J. Brinker and G. W. Scherer, Sol-Gel Science: the Physic and Chemistry of Sol-Gel Processing, Academic Press, San Diego, Calif, USA, 1990.