Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 514917, 8 pages
Research Article

Efficient Removal of Cr(VI) with Fe/Mn Mixed Metal Oxide Nanocomposites Synthesized by a Grinding Method

1Center for Energy Conservation Technology, School of Engineering, Sun Yat-sen University, Guangzhou 510006, China
2Department of Chemistry, School of Life Science and Technology, Jinan University, Guangzhou 510632, China

Received 5 January 2013; Accepted 13 February 2013

Academic Editor: Huijun Wu

Copyright © 2013 Wang Weilong and Fu Xiaobo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Fe/Mn mixed metal oxides were synthesized facilely by a grinding method and were characterized by TEM, XRD, XPS, and BET. The characterization results revealed that mixed metal oxides were mainly composed of not highly crystallized Fe2O3 and Mn3O4 nanoparticles with a diameter about 3–5 nm. The specific BET surface areas of the composite were affected by the amounts of KCl diluent in the preparation process and about 268 m2/g of the composite can be achieved. Compared with metal oxide adsorbents existent, the composites showed good adsorption capacity, stability, and regeneration activity for Cr(VI) removal. The enhanced adsorption capacity was speculated to be ascribed to the synergistic effect of the mixed metal oxides. By monitoring the valence change in the adsorption process using XPS characterization, the mechanism for Cr(VI) removal on the composites was found to be a combination of electrostatic attraction and ion exchange. The above results demonstrated that the synthesized metal oxides nanocomposite is of great potential for Cr(VI) removal in the fields of remediation of environmental problems.