Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 580607, 8 pages
http://dx.doi.org/10.1155/2013/580607
Research Article

Application of Stabilized Silver Nanoparticles as Thin Films as Corrosion Inhibitors for Carbon Steel Alloy in 1 M Hydrochloric Acid

Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received 29 August 2013; Revised 22 October 2013; Accepted 23 October 2013

Academic Editor: Tianxi Liu

Copyright © 2013 Ayman M. Atta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie—International Edition, vol. 37, no. 5, pp. 550–575, 1998. View at Google Scholar · View at Scopus
  2. H. Mao, C. Li, Y. Zhang, D. E. Bergbreiter, and P. S. Cremer, “Measuring LCSTs by novel temperature gradient methods: evidence for intermolecular interactions in mixed polymer solutions,” Journal of the American Chemical Society, vol. 125, no. 10, pp. 2850–2851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Ulman, “Formation and structure of self-assembled monolayers,” Chemical Reviews, vol. 96, no. 4, pp. 1533–1554, 1996. View at Google Scholar · View at Scopus
  4. Y. H. Lai, C. T. Yeh, S. H. Cheng, P. Liao, and W. H. Hung, “Adsorption and thermal decomposition of alkanethiols on Cu(110),” Journal of Physical Chemistry B, vol. 106, no. 21, pp. 5438–5446, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Loepp, S. Vollmer, G. Witte, and C. Wöll, “Adsorption of heptanethiol on Cu(110),” Langmuir, vol. 15, no. 11, pp. 3767–3772, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. K. Meagher, A. B. Bocarsly, S. L. Bernasek, and T. A. Ramanarayanan, “Interaction of neopentyl thiol with clean and oxygen-modified Fe(100) surfaces,” Journal of Physical Chemistry B, vol. 104, no. 14, pp. 3320–3326, 2000. View at Google Scholar · View at Scopus
  7. T. Shimura and K. Aramaki, “Improvement of the film thickness by modification of the hydroxymethylbenzene SAM with tetraethoxysilane and octanediol for protection of iron from corrosion in 0.5 M NaCl,” Corrosion Science, vol. 50, no. 5, pp. 1397–1405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Shimura and K. Aramaki, “Self-assembled monolayers of p-toluene and p-hydroxymethylbenzene moieties adsorbed on iron by the formation of covalent bonds between carbon and iron atoms for protection of iron from corrosion,” Corrosion Science, vol. 49, no. 3, pp. 1378–1393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Aramaki and T. Shimura, “Complete protection of a passive film on iron from breakdown in a borate buffer containing 0.1 M of Cl by coverage with an ultrathin film of two-dimensional polymer,” Corrosion Science, vol. 48, no. 1, pp. 209–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Y. Feng, S. H. Chen, W. J. Guo, Y. X. Zhang, and G. Z. Liu, “Inhibition of iron corrosion by 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra-(4-chlorophenyl)porphyrin adlayers in 0.5 M H2SO4 solutions,” Journal of Electroanalytical Chemistry, vol. 602, no. 1, pp. 115–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. J. Guo, S. H. Chen, Y. Y. Feng, and C. J. Yang, “Investigations of triphenyl phosphate and bis-(2-ethylhexyl) phosphate self-assembled films on iron surface using electrochemical methods, fourier transform infrared spectroscopy, and molecular simulations,” Journal of Physical Chemistry C, vol. 111, no. 7, pp. 3109–3115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Kizuka, H. Ichinose, and Y. Ishida, “Structure and hardness of nanocrystalline silver,” Journal of Materials Science, vol. 32, no. 6, pp. 1501–1507, 1997. View at Google Scholar · View at Scopus
  13. H. Liu, X. Ge, Y. Ni, Q. Ye, and Z. Zhang, “Synthesis and characterization of polyacrylonitrile-silver nanocomposites by γ-irradiation,” Radiation Physics and Chemistry, vol. 61, no. 1, pp. 89–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chemical Communications, no. 7, pp. 617–618, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. S. Strom, X. Y. Liu, and M. Wang, “Solution-induced reconstructive epitaxial nucleation on pseudoflat surfaces of fractal gel-grown ammonium chloride,” Journal of Physical Chemistry B, vol. 104, no. 41, pp. 9638–9646, 2000. View at Google Scholar · View at Scopus
  16. Z. S. Pillai and P. V. Kamat, “What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?” Journal of Physical Chemistry B, vol. 108, no. 3, pp. 945–951, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Guo, F. Gu, Z. Wang, D. Li, and H. Guo, “Preparation of Zn nanocrystals with different morphologies by laser ablation,” Chinese Journal of Nonferrous Metals, vol. 14, no. 10, pp. 1747–1751, 2004. View at Google Scholar · View at Scopus
  18. L. Quaroni and G. Chumanov, “Preparation of polymer-coated functionalized silver nanoparticles,” Journal of the American Chemical Society, vol. 121, no. 45, pp. 10642–10643, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, and M. J. Yacaman, “Corrosion at the nanoscale: the case of silver nanowires and nanoparticles,” Chemistry of Materials, vol. 17, no. 24, pp. 6042–6052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Manna, T. Imae, K. Aoi, M. Okada, and T. Yogo, “Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles,” Chemistry of Materials, vol. 13, no. 5, pp. 1674–1681, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, and D. Dash, “Characterization of enhanced antibacterial effects of novel silver nanoparticles,” Nanotechnology, vol. 18, no. 22, Article ID 225103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Kvitek, A. Panacek, J. Soukupova et al., “Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs),” Journal of Physical Chemistry C, vol. 112, no. 15, pp. 5825–5834, 2008. View at Publisher · View at Google Scholar
  23. A. M. Atta, G. A. El-Mahdy, and H. A. Allohedan, “Corrosion inhibition efficiency of modified silver nanoparticles for carbon steel in 1 M HCl,” International Journal Electrochemical Science, vol. 8, no. 4, pp. 4873–4885, 2013. View at Google Scholar
  24. S. T. Selvan, J. P. Spatz, H. A. Klok, and M. Möller, “Gold-polypyrrole core-shell particles in diblock copolymer micelles,” Advanced Materials, vol. 10, no. 2, pp. 132–134, 1998. View at Google Scholar · View at Scopus
  25. J. S. Nambam and J. Philip, “Competitive adsorption of polymer and surfactant at a liquid droplet interface and its effect on flocculation of emulsion,” Journal of Colloid and Interface Science, vol. 366, no. 1, pp. 88–95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Philip, G. Gnanaprakash, T. Jayakumar, P. Kalyanasundaram, and B. Raj, “Three distinct scenarios under polymer, surfactant, and colloidal interaction,” Macromolecules, vol. 36, no. 24, pp. 9230–9236, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Bentiss, M. Lagrenée, and M. Traisnel, “2,5-bis(n-pyridyl)-1,3,4-oxadiazoles as corrosion inhibitors for mild steel in acidic media,” Corrosion, vol. 56, no. 7, pp. 733–742, 2000. View at Google Scholar · View at Scopus
  28. V. Hluchan, B. L. Wheeler, and N. Hackerman, “Amino acids as corrosion inhibitors in hydrochloric acid solutions,” Materials and Corrosions, vol. 39, no. 11, pp. 512–517, 1988. View at Google Scholar · View at Scopus
  29. M. A. Amin, S. S. Abd El Rehim, and H. T. M. Abdel-Fatah, “Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation method,” Corrosion Science, vol. 51, no. 4, pp. 882–894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Bentiss, M. Traisnel, N. Chaibi, B. Mernari, H. Vezin, and M. Lagrenée, “2,5-bis(n-methoxyphenyl)-1,3,4-oxadiazoles used as corrosion inhibitors in acidic media: correlation between inhibition efficiency and chemial structure,” Corrosion Science, vol. 44, no. 10, pp. 2271–2289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. X. H. Li, S. D. Deng, and H. Fu, “Inhibition by Jasminum nudiflorum Lindl. leaves extract of the corrosion of cold rolled steel in hydrochloric acid solution,” Journal of Applied Electrochemistry, vol. 40, no. 9, pp. 1641–1649, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Larabi, Y. Harek, M. Traisnel, and A. Mansri, “Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1 M HCl,” Journal of Applied Electrochemistry, vol. 34, no. 8, pp. 833–839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. L. J. Li, X. P. Zhang, J. L. Lei, J. X. He, S. T. Zhang, and F. S. Pan, “Osmanthus Fragran leaves extract as corrosion inhibitor for carbon steel in hydrochloric acid solution,” Asian Journal of Chemistry, vol. 24, no. 4, pp. 1649–1653, 2012. View at Google Scholar
  34. F. Mansfeld, M. W. Kendig, and S. Tsai, “Recording and analysis of AC impedance data for corrosion studies II. Experimental approach and results,” Corrosion, vol. 38, no. 11, pp. 570–580, 1982. View at Google Scholar · View at Scopus
  35. H. Shih and F. Mansfeld, “A fitting procedure for impedance data of systems with very low corrosion rates,” Corrosion Science, vol. 29, no. 10, pp. 1235–1240, 1989. View at Google Scholar · View at Scopus
  36. S. Martinez and M. Metikoš-Huković, “A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors,” Journal of Applied Electrochemistry, vol. 33, no. 12, pp. 1137–1142, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Macdonald and D. R. Franceschetti, “The electrical analogs of physical and chemical processes,” in Impedance Spectroscopy, J. R. Macdonald, Ed., pp. 96–106, John Wiley & Sons, New York, NY, USA, 1987. View at Google Scholar
  38. D. A. López, S. N. Simison, and S. R. de Sánchez, “The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole,” Electrochimica Acta, vol. 48, no. 7, pp. 845–854, 2003. View at Publisher · View at Google Scholar · View at Scopus