Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 602602, 7 pages
http://dx.doi.org/10.1155/2013/602602
Research Article

Graphene Supported Pt/Ni Nanoparticles as Magnetically Separable Nanocatalysts

State Key Laboratory of Chemical Engineering, Key Laboratory for Green Chemical Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China

Received 12 March 2013; Accepted 10 September 2013

Academic Editor: Teng Li

Copyright © 2013 Ru Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. H. Rümmeli, C. G. Rocha, F. Ortmann et al., “Graphene: piecing it together,” Advanced Materials, vol. 23, no. 39, pp. 4471–4490, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chemical Reviews, vol. 110, no. 1, pp. 132–145, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Stankovich, D. A. Dikin, G. H. B. Dommett et al., “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Li, X. Fan, J. Qi et al., “Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction,” Nano Research, vol. 3, no. 6, pp. 429–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Wang, C. An, J. Liu et al., “Graphene oxide coupled AgBr nanosheets: an efficient dual-functional visible-light-responsive nanophotocatalyst with enhanced performance,” Journal of Materials Chemistry A, vol. 1, no. 8, pp. 2827–2832, 2013. View at Google Scholar
  8. X. Cui, C. Zhang, R. Hao, and Y. Hou, “Liquid-phase exfoliation, functionalization and applications of graphene,” Nanoscale, vol. 3, no. 5, pp. 2118–2126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Xue, S. Jiang, Y. Qu et al., “Graphene-supported hemin as a highly active biomimetic oxidation catalyst,” Angewandte Chemie—International Edition, vol. 51, no. 16, pp. 3822–3825, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. Q. Zhao, D. Chen, Y. Li, G. Zhang, F. Zhang, and X. Fan, “Rhodium complex immobilized on graphene oxide as an efficient and recyclable catalyst for hydrogenation of cyclohexene,” Nanoscale, vol. 5, no. 3, pp. 882–885, 2013. View at Publisher · View at Google Scholar
  11. M. J. McAllister, J.-L. Li, D. H. Adamson et al., “Single sheet functionalized graphene by oxidation and thermal expansion of graphite,” Chemistry of Materials, vol. 19, no. 18, pp. 4396–4404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Dikin, S. Stankovich, E. J. Zimney et al., “Preparation and characterization of graphene oxide paper,” Nature, vol. 448, no. 7152, pp. 457–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Scarpa, S. Adhikari, and A. Srikantha Phani, “Effective elastic mechanical properties of single layer graphene sheets,” Nanotechnology, vol. 20, no. 6, Article ID 065709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Jin, S. Guo, J. l. Zuo, and S. Sun, “Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid,” Nanoscale, vol. 5, no. 1, pp. 160–163, 2013. View at Google Scholar
  15. T. Zeng, X. Zhang, Y. Ma, H. Niu, and Y. Cai, “A novel Fe3O4-graphene-Au multifunctional nanocomposite: green synthesis and catalytic application,” Journal of Materials Chemistry, vol. 22, no. 35, pp. 18658–18663, 2012. View at Google Scholar
  16. P. Kundu, C. Nethravathi, P. A. Deshpande, M. Rajamathi, G. Madras, and N. Ravishankar, “Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: synergistic co-reduction mechanism and high catalytic activity,” Chemistry of Materials, vol. 23, no. 11, pp. 2772–2780, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Chen, Y. Li, F. Zhang, G. Zhang, and X. Fan, “Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities,” Journal of Materials Chemistry, vol. 21, no. 44, pp. 17658–17661, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Guo, D. Wen, Y. Zhai, S. Dong, and E. Wang, “Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing,” ACS Nano, vol. 4, no. 7, pp. 3959–3968, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Astruc, F. Lu, and J. R. Aranzaes, “Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis,” Angewandte Chemie—International Edition, vol. 44, no. 48, pp. 7852–7872, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Shylesh, V. Schünemann, and W. R. Thiel, “Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis,” Angewandte Chemie—International Edition, vol. 49, no. 20, pp. 3428–3459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Ceylan, C. Friese, C. Lammel, K. Mazac, and A. Kirschning, “Induktives heizen in der organischen synthese durch verwendung funktionalisierter magnetischer nanopartikel in mikroreaktoren,” Angewandte Chemie, vol. 120, no. 46, pp. 9083–9086, 2008. View at Google Scholar
  22. Y. Chi, Q. Yuan, Y. Li et al., “Synthesis of Fe3O4@SiO2–Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol,” Journal of Colloid and Interface Science, vol. 383, no. 1, pp. 96–102, 2012. View at Publisher · View at Google Scholar
  23. C. Kamonsatikul, T. Khamnaen, P. Phiriyawirut, S. Charoenchaidet, and E. Somsook, “Synergistic activities of magnetic iron-oxide nanoparticles and stabilizing ligands containing ferrocene moieties in selective oxidation of benzyl alcohol,” Catalysis Communications, vol. 26, pp. 1–5, 2012. View at Google Scholar
  24. Y.-H. Liu, J. Deng, J.-W. Gao, and Z.-H. Zhang, “Triflic acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gem-dihydroperoxides,” Advanced Synthesis and Catalysis, vol. 354, no. 2-3, pp. 441–447, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Polshettiwar and R. S. Varma, “Nanoparticle-supported and magnetically recoverable ruthenium hydroxide catalyst: efficient hydration of nitriles to amides in aqueous medium,” Chemistry—A European Journal, vol. 15, no. 7, pp. 1582–1586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of graphite oxide revisited,” The Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4477–4482, 1998. View at Google Scholar · View at Scopus
  27. S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, no. 4, pp. 217–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. R. Mandlimath and B. Gopal, “Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol,” Journal of Molecular Catalysis A, vol. 350, no. 1-2, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Davar, Z. Fereshteh, and M. Salavati-Niasari, “Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties,” Journal of Alloys and Compounds, vol. 476, no. 1-2, pp. 797–801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. K. Singh and Q. Xu, “Bimetallic Ni-Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage,” Inorganic Chemistry, vol. 49, no. 13, pp. 6148–6152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Gao, F. Xiao, C. B. Ching, and H. Duan, “One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection,” ACS Applied Materials and Interfaces, vol. 3, no. 8, pp. 3049–3057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. T. Ng and D. M. Hercules, “Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy,” The Journal of Physical Chemistry, vol. 80, no. 19, pp. 2094–2102, 1976. View at Google Scholar · View at Scopus
  33. R. Schulz, A. van Neste, P. A. Zielinski et al., “A novel method to produce nanocrystalline metastable supported catalysts,” Catalysis Letters, vol. 35, no. 1-2, pp. 89–106, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Li, L. Tang, and J. Li, “Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites,” Electrochemistry Communications, vol. 11, no. 4, pp. 846–849, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. I. S. Lee, N. Lee, J. Park et al., “Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins,” Journal of the American Chemical Society, vol. 128, no. 33, pp. 10658–10659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Amin, S. Arajs, and E. Matijevic, “Magnetic properties of submicronic α-Fe2O3 particles of uniform size distribution at 300 K,” Physica Status Solidi (A), vol. 104, no. 1, pp. K65–K68, 1987. View at Publisher · View at Google Scholar
  37. T. Seto, H. Akinaga, F. Takano, K. Koga, T. Orii, and M. Hirasawa, “Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles,” The Journal of Physical Chemistry B, vol. 109, no. 28, pp. 13403–13405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Pradhan, A. Pal, and T. Pal, “Silver nanoparticle catalyzed reduction of aromatic nitro compounds,” Colloids and Surfaces A, vol. 196, no. 2-3, pp. 247–257, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Huang, S. Vongehr, S. Tang, H. Lu, and X. Meng, “Highly catalytic Pd-Ag bimetallic dendrites,” The Journal of Physical Chemistry C, vol. 114, no. 35, pp. 15005–15010, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. H.-L. Jiang and Q. Xu, “Recent progress in synergistic catalysis over heterometallic nanoparticles,” Journal of Materials Chemistry, vol. 21, no. 36, pp. 13705–13725, 2011. View at Publisher · View at Google Scholar · View at Scopus