Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013, Article ID 615915, 6 pages
http://dx.doi.org/10.1155/2013/615915
Research Article

Novel Method of Evaluating the Purity of Multiwall Carbon Nanotubes Using Raman Spectroscopy

1CNT Team, Hanwha Chemical, 80 Annamro 402 gil, Bupyeong-gu, Incheon 403-030, Republic of Korea
2Spectro, Gwangju 500-712, Republic of Korea
3Center for Integrated Nanostructure Physics, Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
4Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Received 15 October 2013; Accepted 29 October 2013

Academic Editor: Clare C. Byeon

Copyright © 2013 Young Chul Choi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. J. Cui, H. Z. Geng, W. Y. Wang, L. T. Chen, and J. Gao, “Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites,” Carbon, vol. 54, pp. 277–282, 2013. View at Google Scholar
  2. Y. J. Noh, H. S. Kim, and S. Y. Kim, “Improved electrical conductivity of a carbon nanotube mat composite prepared by in-situ polymerization and compression molding with compression pressure,” Carbon Letters, vol. 13, no. 4, pp. 243–247, 2012. View at Google Scholar
  3. Y. C. Choi, Y. M. Shin, Y. H. Lee et al., “Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition,” Applied Physics Letters, vol. 76, no. 17, pp. 2367–2369, 2000. View at Google Scholar · View at Scopus
  4. S. Akita, Y. Ohshima, and T. Arie, “Nanoincandescent consisting of individual carbon nanotubes,” Applied Physics Express, vol. 4, no. 2, Article ID 025101, 2011. View at Google Scholar
  5. C. T. Chang, C.-P. Juan, and H.-C. Cheng, “Pillar height dependence of field-emission properties in an array of carbon nanotube pillars,” Japanese Journal of Applied Physics, vol. 52, no. 18, Article ID 085101, 2013. View at Google Scholar
  6. A. Mierczynska, M. Mayne-L'Hermite, G. Boiteux, and J. K. Jeszka, “Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method,” Journal of Applied Polymer Science, vol. 105, no. 1, pp. 158–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. L. Jin and S. J. Park, “Recent advances in carbon-nanotube-based epoxy composites,” Carbon Letters, vol. 14, no. 1, pp. 1–13, 2013. View at Google Scholar
  8. J. S. Kim, S. J. Cho, K. S. Jeong, Y. C. Choi, and M. S. Jeong, “Improved electrical conductivity of very long multi-walled carbon nanotube bundle/poly (methyl methacrylate) composites,” Carbon, vol. 49, no. 6, pp. 2127–2133, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. C. Choi, Y. M. Shin, S. C. Lim et al., “Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” Journal of Applied Physics, vol. 88, no. 8, pp. 4898–4903, 2000. View at Google Scholar · View at Scopus
  10. Y. S. Park, H. S. Moon, M. Huh et al., “Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition,” Carbon Letters, vol. 14, no. 2, pp. 99–104, 2013. View at Google Scholar
  11. P. Mahanandia, P. N. Vishwakarma, K. K. Nanda et al., “Synthesis of multi-wall carbon nanotubes by simple pyrolysis,” Solid State Communications, vol. 145, no. 3, pp. 143–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst, and V. Meunier, “Evaluating the characteristics of multiwall carbon nanotubes,” Carbon, vol. 49, no. 8, pp. 2581–2602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. J. P. C. Trigueiro, G. G. Silva, R. L. Lavall et al., “Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 10, pp. 3477–3486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. A. DiLeo, B. J. Landi, and R. P. Raffaelle, “Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy,” Journal of Applied Physics, vol. 101, no. 6, Article ID 064307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Behler, S. Osswald, H. Ye, S. Dimovski, and Y. Gogotsi, “Effect of thermal treatment on the structure of multi-walled carbon nanotubes,” Journal of Nanoparticle Research, vol. 8, no. 5, pp. 615–625, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Li, H. Zhang, C. Wang et al., “Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor,” Applied Physics Letters, vol. 70, no. 20, pp. 2684–2686, 1997. View at Google Scholar · View at Scopus
  17. T. Jawhari, A. Roid, and J. Casado, “Raman spectroscopic characterization of some commercially available carbon black materials,” Carbon, vol. 33, no. 11, pp. 1561–1565, 1995. View at Google Scholar · View at Scopus
  18. Y. S. Park, Y. C. Choi, K. S. Kim et al., “High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing,” Carbon, vol. 39, no. 5, pp. 655–661, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Song, Y. Liu, and J. Zhu, “Multi-walled carbon nanotubes produced by hydrogen DC arc discharge at elevated environment temperature,” Materials Letters, vol. 61, no. 2, pp. 389–391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Balogh, G. Halasi, B. Korbély, and K. Hernadi, “CVD-synthesis of multiwall carbon nanotubes over potassium-doped supported catalysts,” Applied Catalysis A, vol. 344, no. 1-2, pp. 191–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. S. Knight and W. B. White, “Characterization of diamond films by Raman spectroscopy,” Journal of Materials Research, vol. 4, no. 2, pp. 385–393, 1989. View at Google Scholar · View at Scopus
  22. P. V. Huong, “Structural studies of diamond films and ultrahard materials by Raman and micro-Raman spectroscopies,” Diamond and Related Materials, vol. 1, no. 1, pp. 33–41, 1991. View at Google Scholar · View at Scopus