Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 632809, 6 pages
Research Article

Electrochemical Sensor for o-Nitrophenol Based on β-Cyclodextrin Functionalized Graphene Nanosheets

1Research Center for Environmental Science and Engineering, State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030006, China
2Institute of Chemical Ecology, Shanxi Agricultural University, Taigu 030801, China

Received 30 December 2012; Accepted 21 March 2013

Academic Editor: Yongcheng Jin

Copyright © 2013 Jinlong Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An electrochemical sensor for the quantification of o-nitrophenol (o-NP) has been developed based on the β-cyclodextrin functionalized graphene nanosheets modified glassy carbon electrode (CD-GNs/GCE). The results indicated that CD-GNs showed good electrochemical behavior to the redox of o-NP which is attributed to the combination of the excellent properties of graphene and cyclodextrin. The peak currents possess a linear relationship with the concentration of o-NP in the range of 5–400 μM. The detection limit of o-NP reached to 0.3 μM on the basis of the signal-to-noise characteristics ( ). The peak potentials for the reversible redox waves are not affected by other nitrophenol isomers (m, p-NP), illustrating good selectivity. Furthermore, the developed electrochemical sensor exhibited good stability and reproducibility for the detection of o-NP and could be used to determine o-NP in real water sample.