Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 648346, 9 pages
http://dx.doi.org/10.1155/2013/648346
Research Article

Fabrication of Mo+N-Codoped TiO2 Nanotube Arrays by Anodization and Sputtering for Visible Light-Induced Photoelectrochemical and Photocatalytic Properties

Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, China

Received 26 August 2013; Accepted 18 November 2013

Academic Editor: Shenmin Zhu

Copyright © 2013 Min Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fujishima, X. T. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, vol. 63, no. 12, pp. 515–582, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Y.-C. Nah, I. Paramasivam, and P. Schmuki, “Doped TiO2 and TiO2 nanotubes: synthesis and applications,” ChemPhysChem, vol. 11, no. 13, pp. 2698–2713, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: synthesis and applications,” Angewandte Chemie—International Edition, vol. 50, no. 13, pp. 2904–2939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications,” Solar Energy Materials and Solar Cells, vol. 90, no. 14, pp. 2011–2075, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, “Formation of titanium oxide nanotube,” Langmuir, vol. 14, no. 12, pp. 3160–3163, 1998. View at Google Scholar · View at Scopus
  6. J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai, and T. Shimizu, “Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template,” Chemistry of Materials, vol. 14, no. 4, pp. 1445–1447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacohen, and A. Gedanken, “Sonochemical synthesis of titania whiskers and nanotubes,” Chemical Communications, no. 24, pp. 2616–2617, 2001. View at Google Scholar · View at Scopus
  8. A. Ghicov and P. Schmuki, “Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures,” Chemical Communications, no. 20, pp. 2791–2808, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, “TiO2 nanotubes and their application in dye-sensitized solar cells,” Nanoscale, vol. 2, no. 1, pp. 45–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Lee, D. Kim, P. Roy et al., “Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis,” Journal of the American Chemical Society, vol. 132, no. 5, pp. 1478–1479, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Y. Li, N. Lu, X. Quan, S. Chen, and H. M. Zhao, “Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties,” Industrial and Engineering Chemistry Research, vol. 47, no. 11, pp. 3804–3808, 2008. View at Publisher · View at Google Scholar
  12. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, and A. B. Walker, “Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons,” Journal of the American Chemical Society, vol. 130, no. 40, pp. 13364–13372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Wang, C. X. Feng, M. Zhang, J. J. Yang, and Z. J. Zhang, “Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity,” Applied Catalysis B, vol. 104, pp. 268–274, 2011. View at Google Scholar
  15. O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels,” Nano Letters, vol. 9, no. 2, pp. 731–737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kubacka, B. B. Baeza, G. Colon, and M. F. Garcia, “Doping level effect on sunlight-driven W,N-co-doped TiO2-anatase photo-catalysts for aromatic hydrocarbon partial oxidation,” Applied Catalysis B, vol. 93, no. 3-4, pp. 274–281, 2010. View at Publisher · View at Google Scholar
  17. J. Choi, H. Park, and M. R. Hoffmann, “Effects of single metal-Ion doping on the visible-light photoreactivity of TiO2,” Journal of Physical Chemistry C, vol. 114, pp. 783–792, 2010. View at Publisher · View at Google Scholar
  18. A. Kubacka, G. Colón, and M. Fernández-García, “N- and/or W-(co)doped TiO2-anatase catalysts: effect of the calcination treatment on photoactivity,” Applied Catalysis B, vol. 95, no. 3-4, pp. 238–244, 2010. View at Publisher · View at Google Scholar
  19. G. T. Yan, M. Zhang, J. Hou, and J. J. Yang, “Photoelectrochemical and photocatalytic properties of N + S co-doped TiO2 nanotube array films under visible light irradiation,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 553–557, 2011. View at Publisher · View at Google Scholar
  20. D. E. Gu, B. C. Yang, and Y. D. Hu, “V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation,” Catalysis Communications, vol. 9, no. 6, pp. 1472–1476, 2008. View at Publisher · View at Google Scholar
  21. X. C. Wang, J. C. Yu, Y. L. Chen, L. Wu, and X. Z. Fu, “ZrO2-modified mesoporous nanocrystalline TiO2−xNx as efficient visible light photocatalysts,” Environmental Science and Technology, vol. 40, no. 7, pp. 2369–2374, 2006. View at Publisher · View at Google Scholar
  22. K. Q. Tan, H. R. Zhang, C. F. Xie, H. W. Zheng, Y. Z. Gu, and W. F. Zhang, “Visible-light absorption and photocatalytic activity in molybdenum- and nitrogen-codoped TiO2,” Catalysis Communications, vol. 11, no. 5, pp. 331–335, 2010. View at Publisher · View at Google Scholar
  23. J. Zhang, J. H. Xi, and Z. G. Ji, “Mo + N codoped TiO2 sheets with dominant {001} facets for enhancing visible-light photocatalytic activity,” Journal of Materials Chemistry, vol. 22, pp. 17700–17708, 2012. View at Publisher · View at Google Scholar
  24. S. H. Elder, F. M. Cot, Y. Su et al., “The discovery and study of nanocrystalline TiO2-(MoO3) core-shelf materials,” Journal of the American Chemical Society, vol. 122, no. 21, pp. 5138–5146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Al-Kandari, F. Al-Kharafi, and A. Katrib, “Isomerization reactions of n-hexane on partially reduced MoO3/TiO2,” Catalysis Communications, vol. 9, no. 5, pp. 847–852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Klosek and D. Raftery, “Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol,” Journal of Physical Chemistry B, vol. 105, no. 14, pp. 2815–2819, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Wang, D. N. Tafen, J. P. Lewis et al., “Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts,” Journal of the American Chemical Society, vol. 131, no. 34, pp. 12290–12297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. C. Jagadale, S. P. Takale, R. S. Sonawane et al., “N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method,” Journal of Physical Chemistry C, vol. 112, no. 37, pp. 14595–14602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Y. Gong, W. H. Pu, C. Z. Yang, and J. L. Zhang, “Novel one-step preparation of tungsten loaded TiO2 nanotube arrays with enhanced photoelectrocatalytic activity for pollutant degradation and hydrogen production,” Catalysis Communications, vol. 36, pp. 89–93, 2013. View at Publisher · View at Google Scholar
  30. M. Xing, J. Zhang, F. Chen, and B. Tian, “An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities,” Chemical Communications, vol. 47, no. 17, pp. 4947–4949, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Hashimoto and A. Tanaka, “Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment,” Surface and Interface Analysis, vol. 34, no. 1, pp. 262–265, 2002. View at Publisher · View at Google Scholar
  32. D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Physical Review, vol. 113, no. 5, pp. 1222–1226, 1959. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Xu and J. Yu, “Visible-light-induced photoelectrochemical behaviors of Fe-modified TiO2 nanotube arrays,” Nanoscale, vol. 3, no. 8, pp. 3138–3144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. F. Li, D. H. Xu, J. Oh, W. Z. Shen, X. Li, and Y. Yu, “Mechanistic study of codoped titania with nonmetal and metal ions: a case of C + Mo codoped TiO2,” ACS Catalysis, vol. 2, pp. 391–398, 2012. View at Publisher · View at Google Scholar
  35. L. G. Devi, S. G. Kumar, B. N. Murthy, and N. Kottam, “Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination,” Catalysis Communications, vol. 10, no. 6, pp. 794–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. G. Yu, Q. J. Xiang, and M. H. Zhou, “Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures,” Applied Catalysis B, vol. 90, pp. 595–602, 2009. View at Publisher · View at Google Scholar