Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2013 (2013), Article ID 674843, 11 pages
http://dx.doi.org/10.1155/2013/674843
Research Article

Dense Nanostructured Nickel Produced by SPS from Mechanically Activated Powders: Enhancement of Mechanical Properties

1ICB UMR 6303 CNRS/Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France
2Nexter Munitions, 7 route de Guerry, 18000 Bourges, France

Received 25 February 2013; Accepted 16 April 2013

Academic Editor: Faming Zhang

Copyright © 2013 F. Naimi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Lahmani, C. Bréchignac, and P. Houdy, Nanomaterials and Nanochemistry, Springer, Berlin, Germany, 2007.
  2. G. Schmid, “Nanoclusters: Building blocks for future nanoelectronic devices?” Advanced Engineering Materials, vol. 3, pp. 737–743, 2001. View at Google Scholar
  3. C. Pirlot, “Preparation and characterization of carbon nanotube/polyacrylonitrile composites,” Advanced Engineering Materials, vol. 4, pp. 109–114, 2002. View at Google Scholar
  4. C. Edser, “Nanopowders seek commercial roles to repay R&D effort,” Metal Powder Report, vol. 54, no. 4, pp. 11–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Capus, “Prospects look promising for nanopowders,” Metal Powder Report, vol. 56, no. 1, pp. 12–14, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. B. H. Kear and G. Skandan, “Overview: status and current developments in nanomaterials,” International Journal of Powder Metallurgy, vol. 35, no. 7, pp. 35–37, 1999. View at Google Scholar · View at Scopus
  7. Nanomatériaux, Observatoire français des techniques avancées, 2001.
  8. H. Hahn and K. A. Padmanabhan, “A model for the deformation of nanocrystalline materials,” Philosophical Magazine B, vol. 76, no. 4, pp. 559–571, 1997. View at Google Scholar · View at Scopus
  9. E. O. Hall, “The deformation and ageing of mild steel: III Discussion of results,” Proceedings of the Physical Society B, vol. 64, no. 9, article 303, pp. 747–753, 1951. View at Publisher · View at Google Scholar · View at Scopus
  10. N. J. Petch, “Cleavage strength of polycrystals,” Journal of Iron and Steel Institute, vol. 174, pp. 25–28, 1953. View at Google Scholar
  11. H. Gleiter, “Nanocrystalline materials,” Progress in Materials Science, vol. 33, no. 4, pp. 223–315, 1989. View at Google Scholar · View at Scopus
  12. S. Zaefferer, “Investigation of the correlation between texture and microstructure on a submicrometer scale in the TEM,” Advanced Engineering Materials, vol. 5, no. 8, pp. 607–613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Nicolas, “Alliages Lourds de W-Ni-Fe à très haute caractéristiques mécaniques et procédé de fabrication desdits alliages,” Brevet FR 262209 (A1), 1989. View at Google Scholar
  14. J. Bigot, A. G. Goursat, G. Vernet, J. F. Rimbert, J. Foulard, and T. Sarle, 1983, French Patent no. 8307414.
  15. Y. Champion and J. Bigot, “Preparation and characterization of nanocrystalline copper powders,” Scripta Materialia, vol. 35, no. 4, pp. 517–522, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Champion and J. Bigot, “Synthesis and structural analysis of aluminum nanocrystalline powders,” Nanostructured Materials, vol. 10, no. 7, pp. 1097–1110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Umemoto, M. Udaka, K. Kawasaki, and X. D. Liu, “Characterization of mechanically alloyed Ti-Zr-Cu-Ni powders,” Journal of Materials Research, vol. 13, no. 6, pp. 1511–1516, 1998. View at Google Scholar
  18. Y. Moriysohi, M. Futaki, S. Komatsu, and T. Ishigaki, “The preparation and characterization of ultrafine tungsten powder,” Journal of Materials Science Letters, vol. 16, no. 5, pp. 347–349, 1997. View at Google Scholar · View at Scopus
  19. W. R. Cannon, S. C. Danforth, J. H. Flint, J. S. Haggerty, and R. A. Marra, “Sinterable ceramic powders from laser-driven reactions: I, process description and modeling,” Journal of the American Ceramic Society, vol. 65, pp. 324–331, 1982. View at Google Scholar
  20. R. Dez, F. Ténégal, C. Reynaud, M. Mayne, X. Armand, and N. Herlin-Boime, “Laser synthesis of silicon carbonitride nanopowders; structure and thermal stability,” Journal of the European Ceramic Society, vol. 22, no. 16, pp. 2969–2979, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. X. X. Bi, B. Ganguly, G. P. Huffman, F. E. Huggins, M. Endo, and P. C. Eklund, “Nanocrystalline α-Fe, Fe3C, and Fe7C3 produced by CO2 laser pyrolysis,” Journal of Materials Research, vol. 8, no. 7, pp. 1666–1674, 1993. View at Google Scholar · View at Scopus
  22. J. A. Darr and M. Poliakoff, “New directions in inorganic and metal-organic coordination chemistry in supercritical fluids,” Chemical Reviews, vol. 99, no. 2-3, pp. 495–541, 1999. View at Google Scholar · View at Scopus
  23. F. Cansell, C. Aymonier, and A. Loppinet-Serani, “Review on materials science and supercritical fluids,” Current Opinion in Solid State and Materials Science, vol. 7, no. 4-5, pp. 331–340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Hakuta, H. Hayashi, and K. Arai, “Fine particle formation using supercritical fluids,” Current Opinion in Solid State and Materials Science, vol. 7, no. 4-5, pp. 341–351, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Demoisson, M. Ariane, A. Leybros, H. Muhr, and F. Bernard, “Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials,” Journal of Supercritical Fluids, vol. 58, pp. 371–377, 2011. View at Google Scholar
  26. C. Suryanarayana, “Mechanical alloying and milling,” Progress in Materials Science, vol. 46, pp. 1–81, 2001. View at Google Scholar
  27. E. Gaffet and G. Le Caer, “Mechanical processing for nanomaterials,” in Encyclopedia of Nanoscience and Nanotechnology, vol. 1, pp. 1–39, American Scientific Publishers, Stevenson Ranch, calif, USA, 2004. View at Google Scholar
  28. E. Gaffet, F. Bernard, J. C. Niepce et al., “Some recent developments in mechanical activation and mechanosynthesis,” Journal of Materials Chemistry, vol. 9, no. 1, pp. 305–314, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Abdellaoui and E. Gaffet, “A mathematical and experimental dynamical phase diagram for ball-milled Ni10Zr7,” Journal of Alloys and Compounds, vol. 209, no. 1-2, pp. 351–361, 1994. View at Google Scholar · View at Scopus
  30. E. Gaffet, M. Abdellaoui, and N. Malhouroux-Gaffet, “Formation of nanostructural materials induced by mechanical processings,” Materials Transactions, The Japan Institute of Metals, vol. 36, no. 2, pp. 198–209, 1995. View at Google Scholar · View at Scopus
  31. G. E. Fougere, L. Riester, M. Ferber, J. R. Weertman, and R. W. Siegel, “Young's modulus of nanocrystalline Fe measured by nanoindentation,” Materials Science and Engineering A, vol. 204, no. 1-2, pp. 1–6, 1995. View at Google Scholar · View at Scopus
  32. G. E. Fougere, J. R. Weertman, and R. W. Siegel, “Processing and mechanical behavior of nanocrystalline Fe,” Nanostructured Materials, vol. 5, no. 2, pp. 127–134, 1995. View at Google Scholar · View at Scopus
  33. J. Rawers, G. Slavens, D. Govier, C. Doǧan, and R. Doan, “Microstructure and tensile properties of compacted, mechanically alloyed, nanocrystalline Fe-Al,” Metallurgical and Materials Transactions A, vol. 27, no. 10, pp. 3126–3134, 1996. View at Google Scholar · View at Scopus
  34. J. Rawers, “Comparison of attrition milled, nanostructured, powder-compaction techniques,” Nanostructured Materials, vol. 11, no. 4, pp. 513–522, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Eckert, J. C. Holzer, C. E. Krill, and W. L. Johnson, “Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition,” Journal of Materials Research, vol. 7, no. 7, pp. 1751–1761, 1992. View at Google Scholar · View at Scopus
  36. K. R. Venkatachari, D. Huang, S. P. Ostrander, W. A. Schulze, and G. C. Stangle, “Preparation of nanocrystalline yttria-stabilized zirconia,” Journal of Materials Research, vol. 10, no. 3, pp. 756–761, 1995. View at Google Scholar · View at Scopus
  37. M. Tokita, “Trends in advanced SPS spark plasma sintering systems and technology: functionally gradients materials and unique synthetic processing methods from next generation of powder technology,” Journal of the Society of Powder Technology, Japan, vol. 30, pp. 790–804, 1993. View at Google Scholar
  38. M.-N. Avettand-Fenoël, Influence des Paramètres de Broyage et de Frittage sur la Microstructure d'Alliages O.D.S à Base de Tungstène [Ph.D. thesis], 2003.
  39. R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Materials Science and Engineering R, vol. 63, no. 4-6, pp. 127–287, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, “Spark plasma sintering of alumina,” Journal of the American Ceramic Society, vol. 85, no. 8, pp. 1921–1927, 2002. View at Google Scholar · View at Scopus
  41. G. Bernard-Granger and C. Guizard, “Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification,” Acta Materialia, vol. 55, no. 10, pp. 3493–3504, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Millot, S. Le Gallet, D. Aymes, F. Bernard, and Y. Grin, “Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis,” Journal of the European Ceramic Society, vol. 27, no. 2-3, pp. 921–926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Cabouro, S. Chevalier, E. Gaffet, D. Vrel, N. Boudet, and F. Bernard, “In situ synchrotron investigation of MoSi2 formation mechanisms during current-activated SHS sintering,” Acta Materialia, vol. 55, no. 18, pp. 6051–6063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Ji, T. Grosdidier, F. Bernard, S. Paris, E. Gaffet, and S. Launois, “Bulk FeAl nanostructured materials obtained by spray forming and spark plasma sintering,” Journal of Alloys and Compounds, vol. 434-435, pp. 358–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. A. Munir, F. Charlot, F. Bernard, and E. Gaffet, “One-step synthesis and consolidation of nano-phase materials,” U.S Patent no.6, 200,515, March 2001.
  46. G. Ji, F. Bernard, S. Launois, and T. Grosdidier, “Processing conditions, microstructure and mechanical properties of hetero-nanostructured ODS FeAl alloys produced by SPS,” Materials Science and Engineering, vol. 559, pp. 566–573, 2013. View at Google Scholar
  47. M. Abdellaoui, T. Barradi, and E. Gaffet, “Mechanism of mechanical alloying phase formation and related magnetic and mechanical properties in the FeSi system,” Journal of Alloys and Compounds, vol. 198, no. 1-2, pp. 155–164, 1993. View at Google Scholar · View at Scopus
  48. M. Abdellaoui and E. Gaffet, “The physics of mechanical alloying in a planetary ball mill: Mathematical treatment,” Acta Metallurgica Et Materialia, vol. 43, no. 3, pp. 1087–1098, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Le Bail, H. Duroy, and J. L. Fourquet, “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Materials Research Bulletin, vol. 23, no. 3, pp. 447–452, 1988. View at Google Scholar · View at Scopus
  50. L. Minier, Influence du Frittage “Flash” sur l’Obtention de Nanostructures dans des Systèmes Métalliques et Céramiques [Ph.D. thesis], Université de Bourgogne, 2008.
  51. H. Couque, L. Minier, C. Wolff et al., “High strain rate response of nanostructured and microstructured nickel elaborated by SPS,” in Proceedings of the 18th DYMAT Technical Meeting, H. Couque, Ed., pp. 57–64, 2008.
  52. O. Boytsov, A. I. Ustinov, E. Gaffet, and F. Bernard, “Correlation between milling parameters and microstructure characteristics of nanocrystalline copper powder prepared via a high energy planetary ball mill,” Journal of Alloys and Compounds, vol. 432, no. 1-2, pp. 103–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Ebrahimi, G. R. Bourne, M. S. Kelly, and T. E. Matthews, “Mechanical properties of nanocrystalline nickel produced by electrodeposition,” Nanostructured Materials, vol. 11, no. 3, pp. 343–350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Xiao, R. A. Mirshams, S. H. Whang, and W. M. Yin, “Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel,” Materials Science and Engineering A, vol. 301, no. 1, pp. 35–43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. Q.H. Bui, Polycristaux à Grains Ultrafins Élaborés par Métallurgie des Poudres: Microstructure, Propriétés Mécaniques et Modélisation Micromécanique [Ph.D. thesis], University of Paris 13, Villetaneuse, France, 2008.
  56. Q. H. Bui, G. Dirras, S. Ramtani, and J. Gubicza, “On the strengthening behavior of ultrafine-grained nickel processed from nanopowders,” Materials Science and Engineering A, vol. 527, no. 13-14, pp. 3227–3235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R. Valiev, “Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation,” Materials Science and Engineering A, vol. 397, no. 1-2, pp. 330–337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Farbaniec, Deformation Mechanisms and Fracture Strength of Polycrystalline Ultrafine-Grained Materials: Experimental and Numerical Investigations [Ph.D. thesis], University of Paris 13, Villetaneuse, France, 2012.
  59. P. Scardi, M. Leoni, E.J. Mittemeijer, and P. Scardi, Diffraction Analysis of the Microstructure of Materials, Springer, Berlin, Germany, 2003.
  60. L. Minier, S. Le Gallet, Y. Grin, and F. Bernard, “Influence of the current flow on the SPS sintering of a Ni powder,” Journal of Alloys and Compounds, vol. 508, no. 2, pp. 412–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Minier, S. Le Gallet, Yu. Grin, and F. Bernard, “A comparative study of nickel and alumina sintering using Spark Plasma Sintering (SPS),” Materials Chemistry and Physics, vol. 134, pp. 243–253, 2012. View at Google Scholar